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Abstract

Objective The aim of this study is to assess the perfor-
mance of a computer-aided semi-automated algorithm we
have adapted for the purpose of segmenting malignant pleu-
ral mesothelioma (MPM) on CT.

Methods Forty-five CT scans were collected from 15
patients (M:F = 10:5, mean age 62.8 years) in a multi-centre
clinical drug trial. A computer-aided random walk-based
algorithm was applied to segment the tumour; the results were
then compared to radiologist-drawn contours and correlated
with measurements made using the MPM-adapted Response
Evaluation Criteria in Solid Tumour (modified RECIST).
Results A mean accuracy (Sgrensen—Dice index) of 0.825
(95% CI0.758,0.892]) was achieved. Compared to a median
measurement time of 68.1 min (range [40.2, 102.4]) for man-
ual delineation, the median running time of our algorithm was
23.1min (range [10.9, 37.0]). A linear correlation (Pearson’s
correlation coefficient: 0.6392, p < 0.05) was established
between the changes in modified RECIST and computed
tumour volume.

Conclusion Volumetric tumour segmentation offers a poten-
tial solution to the challenges in quantifying MPM. Com-
puter-assisted methods such as the one presented in this
study facilitate this in an accurate and time-efficient man-
ner and provide additional morphological information about
the tumour’s evolution over time.
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Introduction

Malignant pleural mesothelioma (MPM) is an aggressive tho-
racic malignancy that is closely linked to past exposure to
asbestos. It is currently responsible for over 47,000 annual
deaths worldwide, a number which continues to increase
despite legal restrictions limiting the use of asbestos in many
countries [1]. MPM is currently the greatest single cause
of work-related deaths in the UK [2]. Although the produc-
tion of asbestos was gradually phased out in the 1980s, the
disease’s long latency period, typically ranging from 30 to
40 years, has caused a continuing rising trend of MPM in the
country, which is projected to peak in 2020 [3]. Moreover,
asbestos is still being harvested and used in the develop-
ing world, most notably in China and India, where MPM is
rapidly becoming a prominent occupational health concern
[4,5].

MPM usually originates in the parietal pleura of the lung
and grows as a ‘rind’ around the pleural surface. It has a
tendency to encase the affected lung, severely impairing its
ventilatory function. The detection of early-stage MPM on
CT is difficult because of the complexity of thoracic anatomy
and the challenge in distinguishing the tumour from neigh-
bouring tissues, in terms of both pixel intensity and regional
texture. A sample CT axial slice, with the relevant thoracic
tissues highlighted, is shown in Fig. 1. Intensity distributions
of these tissues (in Hounsfield units) are shown in Fig. 2.
Their overlapping nature, hence the tumour’s low contrast
on CT, is evident.
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Fig. 1 Sample CT image slice with key regional tissues highlighted.
Tumour is shown in orange. a Original, b segmented CT

To quantify the progression of a tumour and its response
to treatment in clinical trials and patient follow-ups, cur-
rent clinical practice recommends the use of MPM-adapted
Response Evaluation Criteria in Solid Tumour (modified
RECIST) [6]. This quantifies the tumour based on a one-
dimensional measurement of its thickness at two locations
on three axial levels of the scan. A major drawback of modi-
fied RECIST is that it measures the tumour at just six singular
points, irrespective of the tumour’s overall shape and growth
pattern. As a result, it is known to be prone to intra-observer
and inter-observer variations. In one study [7], major and
minor disagreements were found in 40% and 10.5% of
the cases, respectively. Such discrepancies can largely be
attributed to the inconsistent selection of measurable lesions
and radiological artefacts such as the partial volume effect,
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Fig. 2 Probabilistic intensity distributions of the overall image scan
and individual tissues in the thorax. a Overall scan, b individual tissues

which gives rise to ambiguous tissue boundaries. Addition-
ally, being one dimensional in nature, the system fails to
adequately address tumour growth in the axial direction.
Overall, considering the low CT contrast between the MPM
tumour and surrounding tissues and the tumour’s characteris-
tic ‘rind-pattern’ growth, modified RECIST is limited both in
its ease of application, consistency and overall clinical utility.

Noting the limitations of modified RECIST, previous
works on MPM [8-16] have supported the use of segmented
tumour volumes for evaluating the tumour’s response to treat-
ments.

Ak et al. [8] estimated the tumour volume by counting
the number of evenly spaced dots that fall within the tumour
boundary, as determined by the clinical observer. Though
the results showed good correlation with patient survival and
prognostic data, it remains a manual method, which would
require tedious and time-consuming radiological supervi-
sion.



Int J CARS (2017) 12:529-538

531

Armato et al. [9] developed an automated method to com-
pute for modified RECIST. This method works by first seg-
menting the lungs by thresholding to mark the inner margin
of the tumour, followed by taking a thickness measurement
perpendicular to the nearby chest wall or mediastinum. The
results were presented in terms of ‘clinical acceptance rate’,
as determined by trained radiologists, which was found to be
as high as 75%. Although this approach offers some guid-
ance for making RECIST measurements, it still makes use
of the modified RECIST framework and does not tackle its
intrinsic limitations.

In view of the challenging nature of automated MPM
segmentation, Frauenfelder et al. [10] applied interpolation
to hand-drawn tumour contours found on every 4-5 axial
cuts. Inter-observer agreement of the segmented tumour was
reported to be significantly higher than that of modified
RECIST (¢« = 0.9 vs k = 0.33). However, although inter-
polation helped reduce the workload, the method did not
circumvent the need for manual drawing.

Liu et al. [11] presented some preliminary works on a
volume-based MPM tumour evaluation, where the authors
studied the baseline and follow-up data collected from 30
patients and found patient survival to be linked to baseline
tumour volume with a good degree of certainty.

Chaosaowong et al. [14] introduced a method that com-
putes a contour containing the tumour and pleura. Assuming a
convex shape for the pleura, concave irregularities are treated
as potential sites of pleural thickening, which would undergo
thresholding before the final classification. In addition to
being prone to thresholding-related issues, this approach
made numerous assumptions about the tumour’s pattern of
growth, which would limit its applicability in a wider clinical
context.

Sensakovic et al. [15] applied a more advanced MPM seg-
mentation method based on a nonlinear diffusion model and
a k-class classifier. For each of the 31 MPM scans examined
in the study, 5 axial scans were segmented on a 2-D basis and
validated by manual delineations made by five independent
clinical observers. Mean Jaccard similarity coefficient (J-
index) was found to be 0.517 (p < 0.05) between observers
and 0.484 (p < 0.05) between manual and computed seg-
mentations, which is less than ideal for a wider clinical appli-
cation. It should also be noted that this method was imple-
mented in 2-D, tested only with diagnostic imaging data, and
did not allow the clinician to influence the segmentation itself
through user interaction. Labby et al. [16] added an interpo-
lation component to the 2-D method of Sensakovic et al. and
extended its scope to MPM follow-up studies. An inverse
relationship was reported between the tumour and aerated
lung volumes, which is in line with clinical expectation.

It should be noted despite the above efforts, a method that
is capable of segmenting all tumour cases accurately is yet
to be established.

The segmentation of MPM presents numerous appli-
cation-specific challenges, one of which is due to the similar-
ity in CT attenuation of an MPM lesion with its neighbouring
tissues. This is made worse by the presence of atelectatic
lungs and pleural effusion; commonly found in patients with
clinically evident MPM. This largely precludes the direct
application of simple segmentation methods such as thresh-
olding, region growing, texture filtering, and active contours.
The tumour may also grow in finger-like projections along the
lung fissures or hilar vessels and can invade the neighbour-
ing structures. This would severely affect the performance of
shape and morphology-based methods [13]. Moreover, the
long thin shape of the tumour, anatomical complexity of the
thoracic region, in particular due to secondary chest con-
ditions such as pleural effusion, intrinsic image noise, and
partial volume effect, pose considerable challenges which
collectively prevent the application of many established seg-
mentation methods.

In this paper, we present a computer-aided segmentation
algorithm that is capable of accurately segmenting the MPM
tumour and has the ability to incorporate input from end-users
with good robustness.

Methods and materials
Study design

The data used in this study were collected from a Phase II
clinical trial of Vinflunine, which was tested as a therapeutic
agent for MPM across nine centres in the UK, France, and
Germany. Specifics on the trial design and outcome are given
in [17]. Informed consent was obtained from all individual
participants included in the study.

For our study, data from the UK centres were avail-
able, collected from 15 patients, with a total of 48 baseline
and follow-up CT scans. Patient characteristics are given in
Table 1. All patients had histologically and cytologically
confirmed cases of mesothelioma and at least one lesion
that satisfied the measurability criteria in modified RECIST
(defined as pleural tumour thickness of at least 5 mm at three
locations on the CT scan, with a sum >20mm). Each par-
ticipant received one baseline scan and between one to three
follow-up scans. All scans are valid for assessing tumour
responses under modified RECIST (i.e. at least four weeks
have lapsed between subsequent scans). Patients were treated
until either disease progression or unacceptable chemother-
apeutic toxicity.

Data collection

The CT examinations were performed on a LightSpeed
Ultra CT scanner (General Electric Medical Systems). Each
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Table 1 Patient characteristics

Characteristic Value
Patient number 15
Mean age (range in years) 62.8 (47.9-79.7)
Male/female [n (%)] 10:5 (67:33)
Karnofsky performance status (%)

80 7 (46.7)

90 7 (46.7)

100 1(6.7)
Histologic type [1n (%)]

Epithelial 12 (80.0)

Mixed 2(13.3)

Not specified 1(6.7)
Stage at initial diagnosis (IMIG classification) (%)

| 1(6.7)

1T 3(20.1)

11 7(43.3)

v 4(29.9)

CT scan consisted of multiple axial slices of 512 x 512
pixels. An assortment of thick (5mm), thin (2.5mm), and
quasi-isotropic (0.625 mm) scans was available, with a voxel
spacing of 0.68 mm. No contrast enhancing agent was used.

Random walk-based image segmentation

We implemented the semi-automatic random walk-based
segmentation method by Grady [18], where details of the
mathematical formulation are presented. The method han-
dles weak tissue boundaries well and is able to segment any
arbitrary shapes with appropriately placed seeds.

The key steps in our segmentation algorithm are outlined
in Fig. 3.

We have extended Grady’s original method to 3-D based
on a nine-connected graph model, aiming to improve the
algorithm performance by adopting additional image infor-
mation from adjacent axial slices for classifying the image
voxel in question. Performance-wise, it is superior to sim-
ple interpolation applied in the vertical axis because uneven
tumour growth and anatomical irregularities are dealt with
equally in the planar and inter-planar domains and are there-
fore better accounted for.

Compared to its planar counterpart, a volumetric segmen-
tation would not require exhaustive initialisation on all axial
slices; specifying initialisation seeds on just a few axial slices
is sufficient to produce accurate full volume segmentations.

User interaction

User-defined seeds are initialisation points the radiologically
trained user places, based on their clinical experience, in
regions they known to be of tumour. Using a semi-automated
method with user-defined seeds is advantageous because it
gives the radiologists more control of the segmentation pro-
cess by enabling them to influence both the initialisation and
post-segmentation revision steps with their clinical knowl-
edge about the patient’s disease.

However, defining ’seed regions’, contour areas of known
tumour instead of points within the tumour, as required by
Grady’s random walk-based method, on a large number of
image slices is laborious, substantially reducing the clinical
practicality of the algorithm. For our study, initialising seeds
are placed by a clinical radiology specialist with five years
of MPM diagnostic experience, based on expert knowledge
about MPM, and added them to between six and ten axial

Start with the image
scan

Create a graph whose
edge weights are
depended on the seeds

V

Solve a system of
equations with a
sparse matrix solver
for probabilities

User-defined seeds

Fig. 3 Key steps in the
computer-aided method
Segmented tumour
Refine segmentation
with additional
seeds to isolate the
tumour boundaries

: maximum probability

@ Springer

Segmentation results
based on the tissue
class with the




Int J CARS (2017) 12:529-538

533

(a)
Hand-drawn tumour

Hand-drawn tumour

Fig. 4 Segmented tumour contours on axial cuts of two arbitrarily selected CT scans, as shown in white. Manually delineated tumour contours are

shown in orange. a, ¢ Reference truth, b, d segmented tumour

slices for each image scan, that is, one initialised slice for
every ten raw image slices. On average, 20-30 seeds were
placed per initialisation slice, taking 20-30s. The initialisa-
tion slices were not evenly distributed across the volume scan;
they tend to concentrate around regions of difficulty, marked
by the presence of weak tumour boundary, fluid and/or col-
lapsed lung. Additionally, to facilitate an effective response
evaluation, the same axial locations were selected for ini-
tialisation in follow-up scans of the same patient. This is
comparable to modified RECIST, where the measurements
are taken from the same transverse cuts for different scans of
the same patient. Further seeds can be added at areview stage
if deemed necessary by the observer, to enhance the segmen-
tation accuracy. This was only required in one out of every
three scans. The additional running time for this additional
seeding process is minimal, normally a fraction of the overall

time spent on the initial segmentation, as will be presented
in the Results section of this paper.

All computation times are based on using a workstation
with Pentium-D CPU 3.39 GHz with 2GB of RAM.

Gold standard

To validate our findings, a clinical radiologist with five years
of experience in MPM evaluation manually delineated the
tumour contours on the whole imaging dataset. Though such
delineations vary between observers and over time, for sim-
plicity, we refer to them here as the ’reference truth’. We
recognise the fact that the reference truth used might not be
ideal, but for the purpose of our study and from an explorative
research perspective, we use them here as a surrogate gold
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Fig. 5 Effect of user input on the method’s performance. a Segmen-
tation accuracy in three different seeding attempts, b Number of seeds
employed in each scenario

standard. To reduce observer bias, a blinded experimental
design was implemented, where the delineations were made
without knowledge of the clinical outcomes of individual
patients and the modified RECIST measurements.

Data analysis and statistical methods

The accuracy of the segmentation results is evaluated by cal-
culating the Sgrensen—Dice index (DICE) according to the
following equation, where X and Y represents the reference
truth and the segmentation result, respectively:

21X NY|
DICE= — - 1
| X[+ Y]

To assess the clinical utility of the computer-assisted
method, we computed the correlation of changes in computed
tumour volume with those in modified RECIST measure-
ment.
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Fig. 6 A breakdown of accuracy performance of the two trials pre-
sented in Fig. 5. Arrows point to the slices where initialisation seeds
were placed

Results
Tumour quantification

Applying our computer-aided algorithm, segmented MPM
tumour contours are computed in the axial planes. Sample
results from two arbitrarily selected scans are shown in Fig. 4.
Note the close resemblance of the segmented tumour with
the reference truth. The calculated planar DICE measures in
these cases were 0.89 and 0.91, respectively.

Results validation

An assessment of the effect of user input on the method’s per-
formance and its overall robustness is shown in Fig. 5. Note
the accuracy of segmentation is largely independent of the
number of "seeds’ used, once beyond a certain level. Note also
the good reproducibility and consistency of the results, where
changing the ’seeding’ map did not significantly impact on
the overall segmentation accuracy.
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3‘;’1[:1 l;js (Srﬁrgnn;;m;jdcx Egg from Patient Scan % Change Overall accuracy (DICE)
baseline to the final cycle of Baseline 2 cycles 4 cycles 6 cycles
treatment and overall accuracy
of the segmentation for our 1 229,031 274,025 165,920 182,376 —19.1 0.820
complete patient data: mean 2 333,650 289,575 188461 232,001  —30.5 0.843
0.825 (95% CI [0.758, 0.892])
3 231,266 274,968 285,437 23.4 0.861
4 523,928 338,702 —354 0.894
5 216,690 165,982 —234 0.772
6 492,666 180,036 389,923 -20.9 0.814
7 348,011 526,396 51.3 0.782
8 315,052 340,443 330,652 291,806 —7.4 0.852
9 813,416 870,872 7.1 0.802
10 10,6348 132,937 182,732 71.8 0.791
11 523,828 348,642 397,824 333911 —35.3 0.832
12 939,842 630,513 87,445 -7.1 0.840
13 211,220 209,103 152,571 —27.8 0.869
14 163,116 208,185 238,774 46.4 0.821
15 476,943 505,001 461,913 634,501 33.0 0.784
’tl;l?(l;:le fi . if;gg;;ﬁ;o:azgl 1enf:1)g o Patient Scan Running time (s)
scan. The median running time Baseline 2 cycles 4 cycles 6 cycles
is 1385s (range [653, 2218])
1 814 655 684 458 653
2 935 1011 455 815 804
3 2557 780 900 1413
4 1400 1346 1373
5 1474 1147 1311
6 1609 1940 985 1511
7 1466 1314 1390
8 2067 1461 1656 1832 1754
9 1846 1754 1800
10 1063 1233 1543 1280
11 1288 823 579 930 905
12 2538 2491 1624 2218
13 1471 1161 1145 1259
14 1572 1301 1281 1385
15 1623 1721 1476 1716 1634

An analysis of the accuracy measure for individual slices
in these cases is shown in Fig. 6. As expected, performance
of the algorithm generally deteriorates with distance from the
initialisation slices. Full segmentation results and computa-
tion times of each individual scan are presented in Tables 2
and 3, respectively.

Good accuracy of the computerised method is clearly
demonstrated, with results yielding a mean accuracy of 0.825
(95% CI110.758, 0.892]).

Time efficiency of our method

The median time spent on manually delineating the tumour
in a typical CT scan was 68.1 min (range [40.2, 102.4]). In
comparison, the median running time of the computer-aided
procedure was 23.1min (range [10.9, 37.0]). The median
total time spent on manual user interaction was 2.8 min (range
[1.8,4.2]) per image scan. The computer running time could
potentially be reduced further by increasing the workstation
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processing power or by incorporating the use of graphics
processor units (GPUs).

Although modified RECIST would take less time to mea-
sure from start to finish, it remains a manual process, which
requires focused work from a clinician; whereas a computer-
aided algorithm such as the one presented in this paper
requires little supervision and would enable this clinical time
to be invested elsewhere.

Statistical correlation with modified RECIST

Correlation with the modified RECIST is shown as a scatter
plot with linear fit, as shown in Fig. 7.

This shows that tumour response found using the seg-
mented volumes is well correlated with that predicted by the
change in modified RECIST and supports the use of volu-
metric segmentation from a clinical perspective.

80 T T T T T T T T T

% CHANGE IN VOLUME

60 4

80 60 40 -2 0 20 40 60 80 100 120
% CHANGE IN RECIST

Fig. 7 Scatter plots showing the correlation of segmented tumour vol-
umes with their corresponding modified RECIST measures. Pearson’s
correlation coefficient 0.6392, p value: 0.0001, R? = 0.4086

Discussion

Assessing the therapeutic response of MPM is difficult
because of the tumour’s poor image contrast and its large
variation in shape and growth pattern, which prevent an
effective choice of measurement points when employing
modified RECIST. These characteristics also happen to make
the computer-assisted segmentation of MPM difficult.

It should be noted that apart from Sensakovic et al. [15],
most of the existing works on computer-assisted MPM seg-
mentation did not assess the accuracy of their proposed
method in a systematic way. Sensakovic etal. [15], whilst pre-
senting a more advanced approach to the problem, produced
a less than desirable J-index of 0.484, was implemented only
in the planar space, was applied to only diagnostic imaging
data, and did not allow the clinician to influence the segmen-
tation itself through user interaction.

Our proposed method, on the other hand, incorporates
a three-dimensional framework, flexibly accepts end-user
inputs, and produces results that are consistently accurate
and with competitive running times.

The results from our method are generally satisfactory,
yielding a mean accuracy (DICE) of 0.825 (95% CI [0.758,
0.892]), taking a median running time of 1385s (95% CI
[653, 2218]), greatly reducing the time requirement of an
otherwise tedious process. The method also exhibits good
robustness because changing the user seed number and con-
figuration did not significant alter the end result. A strong
correlation was found between the changes in tumour vol-
ume and those in modified RECIST. These results support the
use of our algorithm in segmenting MPM for both diagnos-
tic and treatment monitoring purposes. A comparison with
results from various published works on computer-assisted
MPM segmentation is given in Table 4.

To further assess the applicability of our method in a wider
clinical context, it is crucial to develop and validate crite-

Table 4 A comparison of results from various published works on computer-assisted MPM segmentation

Study Study size

Segmentation method Performance

Ak et al. [8] 57 scans from individual

patients

Chaisaowong et al. [14] 14 scans from 3 patients

30 scans from individual
patients

Frauenfelder et al. [10]

Sensakovic et al. [15] 31 scans from 31 patients

Labby et al. [16] 216 scans from 61 patients

Our method 45 scans from 15 patients

Manual dot counting Method accuracy not

assessed for MPM
Convex shape with Method accuracy not
thresholding assessed for MPM
Interpolation to hand-drawn Method accuracy not
tumour contours assessed for MPM

J-index: 0.484 between
manual and computed
segmentations

Nonlinear diffusion model
with k-class classifier

Interpolation component
added to [15]

Automated random walk

Method accuracy not
assessed for MPM
DICE: 0.825 (95% CI

[0.758, 0.892])
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ria for categorising tumour changes. Oxnard et al. [19] used
geometric models to suggest equivalents of the RECIST clas-
sification criteria in the volume space. We note that given the
small size and distribution of our data, we are unable to val-
idate these thresholds based on our study because only 1 out
of our 15 patients would be classified as ‘progressive disease’
and the rest ‘stable disease’. In addition, although these geo-
metric model-derived thresholds provide good insight into
potential volume response criteria, because they are based
on standard geometric shapes, they may not lend well to
the uneven shapes and irregular growth patterns of MPM.
Currently, the issue of volume response criteria remains a
contentious area requiring more work.

To further our work, larger patient datasets are needed. It
would also be helpful to collect more detailed follow-up clin-
ical data from the patients, such as measures of their quality
of life and prognostic data, preferably stratified according
to age, gender, and disease stage at diagnosis. These addi-
tional clinical data would enable us to better validate our
method.

Due to the challenges in assessing the MPM tumour
based on CT scans alone, there is a growing interest in
employing metabolic imaging in MPM follow-ups [20,21].
To this end, it might be helpful to examine the possibil-
ity of bridging the information obtained from segmented
tumour volume to metabolic PET data, such as establish-
ing a correlation between changes in the tumour’s metabolic
output and a particular trend of morphological change in its
shape.

Currently, modified RECIST remains the standard
approach to quantifying MPM in clinical practice, mostly due
to its favourable prediction of patient survival and its existing
wide acceptance in the radiological community. However,
computer-aided volume-based methods, such as the one pre-
sented in this paper, are emerging as a new tactic to the clinical
problem, for their automated action and better performance
consistency.
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