Skip to main content

Advertisement

Log in

Breast ultrasound image segmentation: a survey

  • Review Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Breast cancer is the most common form of cancer among women worldwide. Ultrasound imaging is one of the most frequently used diagnostic tools to detect and classify abnormalities of the breast. Recently, computer-aided diagnosis (CAD) systems using ultrasound images have been developed to help radiologists to increase diagnosis accuracy. However, accurate ultrasound image segmentation remains a challenging problem due to various ultrasound artifacts. In this paper, we investigate approaches developed for breast ultrasound (BUS) image segmentation.

Methods

In this paper, we reviewed the literature on the segmentation of BUS images according to the techniques adopted, especially over the past 10 years. By dividing into seven classes (i.e., thresholding-based, clustering-based, watershed-based, graph-based, active contour model, Markov random field and neural network), we have introduced corresponding techniques and representative papers accordingly.

Results

We have summarized and compared many techniques on BUS image segmentation and found that all these techniques have their own pros and cons. However, BUS image segmentation is still an open and challenging problem due to various ultrasound artifacts introduced in the process of imaging, including high speckle noise, low contrast, blurry boundaries, low signal-to-noise ratio and intensity inhomogeneity

Conclusions

To the best of our knowledge, this is the first comprehensive review of the approaches developed for segmentation of BUS images. With most techniques involved, this paper will be useful and helpful for researchers working on segmentation of ultrasound images, and for BUS CAD system developers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cheng HD, Cai X, Chen X, Hu L, Lou X (2003) Computer-aided detection and classification of microcalcifications in mammograms: a survey. Pattern Recognit 36(12):2967–2991

    Article  Google Scholar 

  2. Lee CH (2002) Screening mammography: proven benefit, continued controversy. Radiol Clin N Am 40(3):395–407

    Article  PubMed  Google Scholar 

  3. Cheng HD, Shi XJ, Min R, Hu LM, Cai XP, Du HN (2006) Approaches for automated detection and classification of masses in mammograms. Pattern Recognit 39(4):646–668

    Article  Google Scholar 

  4. Jesneck JL, Lo JY, Baker JA (2007) Breast mass lesions: computer-aided diagnosis models with mammographic and sonographic descriptors. Radiology 244(2):390–398

    Article  PubMed  Google Scholar 

  5. Bird RE, Wallace TW, Yankaskas BC (1992) Analysis of cancers missed at screening mammography. Radiology 184(3):613–617

    Article  CAS  PubMed  Google Scholar 

  6. Kerlikowske K, Carney PA, Geller B, Mandelson MT, Taplin SH, Malvin K, Ballard-Barbash R (2000) Performance of screening mammography among women with and without a first-degree relative with breast cancer. Ann Intern Med 133(11):855–863

    Article  CAS  PubMed  Google Scholar 

  7. Giger ML (2002) Computer-aided diagnosis in radiology. Acad Radiol 9(1):1–3

    Article  PubMed  Google Scholar 

  8. Sahiner B, Chan HP, Roubidoux MA, Hadjiiski LM, Helvie MA, Paramagul C, Blane C (2007) Malignant and benign breast masses on 3D US volumetric images: effect of computer-aided diagnosis on radiologist accuracy 1. Radiology 242(3):716–724

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chen CM, Chou YH, Han KC, Hung GS, Tiu CM, Chiou HJ, Chiou SY (2003) Breast lesions on sonograms: computer-aided diagnosis with nearly setting-independent features and artificial neural networks 1. Radiology 226(2):504–514

    Article  PubMed  Google Scholar 

  10. Drukker K, Giger ML, Horsch K, Kupinski MA, Vyborny CJ, Mendelson EB (2002) Computerized lesion detection on breast ultrasound. Med Phys 29(7):1438–1446

    Article  PubMed  Google Scholar 

  11. Costantini M, Belli P, Lombardi R, Franceschini G, Mulè A, Bonomo L (2006) Characterization of solid breast masses use of the sonographic breast imaging reporting and data system lexicon. J Ultrasound Med 25(5):649–659

    Article  PubMed  Google Scholar 

  12. Anderson BO, Shyyan R, Eniu A, Smith RA, Yip CH, Bese NS, Carlson RW (2006) Breast cancer in limited-resource countries: an overview of the breast health global initiative 2005 guidelines. Breast J 12(s1):S3–S15

    Article  PubMed  Google Scholar 

  13. Shankar PM, Piccoli CW, Reid JM, Forsberg F, Goldberg BB (2005) Application of the compound probability density function for characterization of breast masses in ultrasound B scans. Phys Med Biol 50(10):2241–2248

    Article  CAS  PubMed  Google Scholar 

  14. Taylor KJ, Merritt C, Piccoli C, Schmidt R, Rouse G, Fornage B, Mendelson E (2002) Ultrasound as a complement to mammography and breast examination to characterize breast masses. Ultrasound Med Biol 28(1):19–26

    Article  PubMed  Google Scholar 

  15. Zhi H, Ou B, Luo BM, Feng X, Wen YL, Yang HY (2007) Comparison of ultrasound elastography, mammography, and sonography in the diagnosis of solid breast lesions. J Ultrasound Med 26(6):807–815

    Article  PubMed  Google Scholar 

  16. Drukker K, Giger M, Meinel LA, Starkey A, Janardanan J, Abe H (2013) Quantitative ultrasound image analysis of axillary lymph node status in breast cancer patients. Int J Comput Assist Radiol Surg 8(6):895–903

    Article  PubMed  Google Scholar 

  17. Chang RF, Wu WJ, Moon WK, Chen DR (2003) Improvement in breast tumor discrimination by support vector machines and speckle-emphasis texture analysis. Ultrasound Med Biol 29(5):679–686

    Article  PubMed  Google Scholar 

  18. André MP, Galperin M, Olson LK, Richman K, Payrovi S, Phan P (2002) Improving the accuracy of diagnostic breast ultrasound. In: Maev RG (ed) Acoustical imaging. Springer, US, pp 453–460

  19. Huang YL, Chen DR, Liu YK (2004, October) Breast cancer diagnosis using image retrieval for different ultrasonic systems. In: 2004 International conference on image processing, 2004. ICIP’04, vol 5. IEEE, pp 2957–2960

  20. Ikedo Y, Morita T, Fukuoka D, Hara T, Lee G, Fujita H, Endo T (2009) Automated analysis of breast parenchymal patterns in whole breast ultrasound images: preliminary experience. Int J Comput Assist Radiol Surg 4(3):299–306

    Article  PubMed  Google Scholar 

  21. Yu-Len H, Yu-Ru J, Jia-Jia S, Dar-Ren C, Kyung MW (2007) Computer-aided diagnosis with morphological features for breast lesion on sonograms. Int J Comput Assist Radiol Surg 2(Suppl. 1):S344–S346

    Google Scholar 

  22. Noble JA, Boukerroui D (2006) Ultrasound image segmentation: a survey. IEEE Trans Med Imaging 25(8):987–1010

    Article  PubMed  Google Scholar 

  23. Wells PNT, Halliwell M (1981) Speckle in ultrasonic imaging. Ultrasonics 19(5):225–229

    Article  Google Scholar 

  24. Xiao G, Brady M, Noble JA, Zhang Y (2002) Segmentation of ultrasound B-mode images with intensity inhomogeneity correction. IEEE Trans Med Imaging 21(1):48–57

    Article  PubMed  Google Scholar 

  25. Cheng HD, Shan J, Ju W, Guo Y, Zhang L (2010) Automated breast cancer detection and classification using ultrasound images: a survey. Pattern Recognit 43(1):299–317

    Article  Google Scholar 

  26. Jalalian A, Mashohor SB, Mahmud HR, Saripan MIB, Ramli ARB, Karasfi B (2013) Computer-aided detection/diagnosis of breast cancer in mammography and ultrasound: a review. Clin Imaging 37(3):420–426

    Article  PubMed  Google Scholar 

  27. Horsch K, Giger ML, Venta LA, Vyborny CJ (2001) Automatic segmentation of breast lesions on ultrasound. Med Phys 28(8):1652–1659

    Article  CAS  PubMed  Google Scholar 

  28. Horsch K, Giger ML, Venta LA, Vyborny CJ (2002) Computerized diagnosis of breast lesions on ultrasound. Med Phys 29(2):157–164

    Article  PubMed  Google Scholar 

  29. Xian M, Zhang Y, Cheng HD (2015) Fully automatic segmentation of breast ultrasound images based on breast characteristics in space and frequency domains. Pattern Recognit 48(2):485–497

    Article  Google Scholar 

  30. Horsch K, Giger ML, Vyborny CJ, Venta LA (2004) Performance of computer-aided diagnosis in the interpretation of lesions on breast sonography. Acad Radiol 11(3):272–280

    Article  PubMed  Google Scholar 

  31. Yap MH, Edirisinghe EA, Bez HE (2007, March) Fully automatic lesion boundary detection in ultrasound breast images. In: Pluim JPW, Reinhardt JM (eds) International Society for Optics and Photonics. Medical Imaging, San Diego, CA, pp 65123I-1–65123I-8

  32. Rodrigues PS, Giraldi GA (2011) Improving the non-extensive medical image segmentation based on Tsallis entropy. Pattern Anal Appl 14(4):369–379

    Article  Google Scholar 

  33. Mustaqeem A, Javed A, Fatima T (2012) An efficient brain tumor detection algorithm using watershed & thresholding based segmentation. Int J Image Graph Signal Process 4(10):34

    Article  Google Scholar 

  34. Filipczuk P, Kowal M, Obuchowicz A (2011) Fuzzy clustering and adaptive thresholding based segmentation method for breast cancer diagnosis. In: Burduk R, Kurzyński M, Woźniak M, Żołnierek A (eds) Computer recognition systems, vol 4. Springer, Berlin, pp 613–622

  35. Altarawneh NM, Luo S, Regan B, Sun C, Jia F (2014) Global threshold and region-based active contour model for accurate image segmentation. Signal Image Process 5(3):1

    Google Scholar 

  36. Dirami A, Hammouche K, Diaf M, Siarry P (2013) Fast multilevel thresholding for image segmentation through a multiphase level set method. Signal Process 93(1):139–153

    Article  Google Scholar 

  37. Kekre HB, Shrinath P (2013) Tumour delineation using statistical properties of the breast US images and vector quantization based clustering algorithms. Int J Image Graph Signal Process 5(11):1–12

    Article  Google Scholar 

  38. Moon WK, Lo CM, Chen RT, Shen YW, Chang JM, Huang CS, Chang RF (2014) Tumor detection in automated breast ultrasound images using quantitative tissue clustering. Med Phys 41(4):042901

    Article  PubMed  Google Scholar 

  39. Shan J, Cheng HD, Wang Y (2012) A novel segmentation method for breast ultrasound images based on neutrosophic l-means clustering. Med Phys 39(9):5669–5682

    Article  PubMed  Google Scholar 

  40. Huang YL, Chen DR (2004) Watershed segmentation for breast tumor in 2-D sonography. Ultrasound Med Biol 30(5):625–632

    Article  CAS  PubMed  Google Scholar 

  41. Huang YL, Chen DR (2006) Automatic contouring for breast tumors in 2-D sonography. In: 2005 27th annual conference IEEE engineering in medicine and biology. IEEE, pp 3225–3228

  42. Gomez W, Leija L, Pereira WCA, Infantosi AFC (2009, March) Morphological operators on the segmentation of breast ultrasound images. In: 2009 Pan American Health Care Exchanges. IEEE, pp 67–71

  43. Gomez W, Leija L, Alvarenga AV, Infantosi AFC, Pereira WCA (2010) Computerized lesion segmentation of breast ultrasound based on marker-controlled watershed transformation. Med Phys 37(1):82–95

    Article  CAS  PubMed  Google Scholar 

  44. Zhang L, Zhang M (2011) A fully automatic image segmentation using an extended fuzzy set. In: Yu Y, Yu Z, Zhao J (eds) Computer science for environmental engineering and ecoinformatics. Springer, Berlin, pp 412–417

  45. Lo CM, Chen RT, Chang YC, Yang YW, Hung MJ, Huang CS, Chang RF (2014) Multi-dimensional tumor detection in automated whole breast ultrasound using topographic watershed. IEEE Trans Med Imaging 33(7):1503–1511

    Article  PubMed  Google Scholar 

  46. Zhou Z, Wu W, Wu S, Tsui PH, Lin CC, Zhang L, Wang T (2014) Semi-automatic breast ultrasound image segmentation based on mean shift and graph cuts. Ultrason Imaging 0161734614524735:1–21

    Google Scholar 

  47. Huang QH, Lee SY, Liu LZ, Lu MH, Jin LW, Li AH (2012) A robust graph-based segmentation method for breast tumors in ultrasound images. Ultrasonics 52(2):266–275

    Article  PubMed  Google Scholar 

  48. Huang Q, Bai X, Li Y, Jin L, Li X (2014) Optimized graph-based segmentation for ultrasound images. Neurocomputing 129:216–224

    Article  Google Scholar 

  49. Chang H, Chen Z, Huang Q, Shi J, Li X (2015) Graph-based learning for segmentation of 3D ultrasound images. Neurocomputing 151:632–644

    Article  Google Scholar 

  50. Huang Q, Yang F, Liu L, Li X (2015) Automatic segmentation of breast lesions for interaction in ultrasonic computer-aided diagnosis. Inf Sci 314:293–310

    Article  Google Scholar 

  51. Eapena MM, Ancelita MSJA, Geetha G (2015) Segmentation of tumors from ultrasound images with PAORGB. Procedia Comput Sci 50:663–668

    Article  Google Scholar 

  52. Felzenszwalb PF, Huttenlocher DP (2004) Efficient graph-based image segmentation. Int J Comput Vis 59(2):167–181

    Article  Google Scholar 

  53. Huang YL, Jiang YR, Chen DR, Moon WK (2007) Level set contouring for breast tumor in sonography. J Digit Imaging 20(3):238–247

    Article  PubMed  PubMed Central  Google Scholar 

  54. Liu B, Cheng HD, Huang J, Tian J, Tang X, Liu J (2010) Probability density difference-based active contour for ultrasound image segmentation. Pattern Recognit 43(6):2028–2042

    Article  Google Scholar 

  55. Gao L, Liu X, Chen W (2012) Phase-and GVF-based level set segmentation of ultrasonic breast tumors. J Appl Math 2012:1–22

    Google Scholar 

  56. Rodtook A, Makhanov SS (2013) Multi-feature gradient vector flow snakes for adaptive segmentation of the ultrasound images of breast cancer. J Vis Commun Image Represent 24(8):1414–1430

    Article  Google Scholar 

  57. Moraru L, Moldovanu S, Biswas A (2014) Optimization of breast lesion segmentation in texture feature space approach. Med Eng Phys 36(1):129–135

    Article  PubMed  Google Scholar 

  58. Wang W, Zhu L, Qin J, Chui YP, Li BN, Heng PA (2014) Multiscale geodesic active contours for ultrasound image segmentation using speckle reducing anisotropic diffusion. Opt Lasers Eng 54:105–116

    Article  Google Scholar 

  59. Rodrigues R, Braz R, Pereira M, Moutinho J, Pinheiro AM (2015) A two-step segmentation method for breast ultrasound masses based on multi-resolution analysis. Ultrasound Med Biol 41(6):1737–1748

    Article  PubMed  Google Scholar 

  60. Takemura A, Shimizu A, Hamamoto K (2010) A cost-sensitive extension of AdaBoost with markov random field priors for automated segmentation of breast tumors in ultrasonic images. Int J Comput Assist Radiol Surg 5(5):537–547

    Article  PubMed  Google Scholar 

  61. Xian M, Huang J, Zhang Y, Tang X (2012, September) Multiple-domain knowledge based MRF model for tumor segmentation in breast ultrasound images. In 2012 19th IEEE international conference on image processing. IEEE, pp 2021–2024

  62. Pons G, Martí J, Martí R, Ganau S, Vilanova JC, Noble JA (2013) Evaluating lesion segmentation on breast sonography as related to lesion type. J Ultrasound Med 32(9):1659–1670

    Article  PubMed  Google Scholar 

  63. Huang SF, Chen YC, Moon WK (2008, May) Neural network analysis applied to tumor segmentation on 3D breast ultrasound images. In: 2008 5th IEEE international symposium on biomedical imaging: from nano to macro. IEEE, pp 1303–1306

  64. Shi J, Xiao Z, Zhou S (2010) Automatic segmentation of breast tumor in ultrasound image with simplified PCNN and improved fuzzy mutual information. In: Visual communications and image processing 2010. International Society for Optics and Photonics, pp 77441P–77441P-8

  65. Jiao J, Wang Y (2011) Automatic boundary detection in breast ultrasound images based on improved pulse coupled neural network and active contour model. In: 2011 5th International conference on bioinformatics and biomedical engineering (iCBBE). IEEE, pp 1–4

  66. Othman AA, Tizhoosh HR (2011) Segmentation of breast ultrasound images using neural networks. In: Iliadis L, Jayne C (eds) Engineering applications of neural networks. Springer, Berlin, pp 260–269

  67. Shan J, Cheng HD, Wang Y (2012) Completely automated segmentation approach for breast ultrasound images using multiple-domain features. Ultrasound Med Biol 38(2):262–275

    Article  PubMed  Google Scholar 

  68. Marcomini KD, Schiabel H, Carneiro AAO (2013, February) Quantitative evaluation of automatic methods for lesions detection in breast ultrasound images. In: Novak CL, Aylward S (eds) SPIE medical imaging. International Society for Optics and Photonics, Orlando, pp 867027–867027-7

  69. Torbati N, Ayatollahi A, Kermani A (2014) An efficient neural network based method for medical image segmentation. Comput Biol Med 44:76–87

    Article  PubMed  Google Scholar 

  70. Binder T, Süssner M, Moertl D, Strohmer T, Baumgartner H, Maurer G, Porenta G (1999) Artificial neural networks and spatial temporal contour linking for automated endocardial contour detection on echocardiograms: a novel approach to determine left ventricular contractile function. Ultrasound Med Biol 25(7):1069–1076

    Article  CAS  PubMed  Google Scholar 

  71. Madabhushi A, Yang P, Rosen M, Weinstein S (2006) Distinguishing lesions from posterior acoustic shadowing in breast ultrasound via non-linear dimensionality reduction. In: 28th Annual international conference of the IEEE engineering in medicine and biology society, 2006. EMBS’06. IEEE, pp 3070–3073

  72. Drukker K, Giger ML, Mendelson EB (2003) Computerized analysis of shadowing on breast ultrasound for improved lesion detection. Med Phys 30(7):1833–1842

    Article  PubMed  Google Scholar 

  73. Kim H, Kim H, Hong H (2015) Chest wall segmentation in automated 3D breast ultrasound using rib shadow enhancement and multi-plane cumulative probability enhanced map. In: Hadjiiski LM, Tourassi GD (eds) SPIE medical imaging. International Society for Optics and Photonics, Orlando, pp 941423-1–941423-8

  74. Massich J, Lemaître G, Martí J, Mériaudeau F (2015) Breast ultrasound image segmentation: an optimization approach based on super-pixels and high-level descriptors. In: The international conference on quality control by artificial vision 2015. International Society for Optics and Photonics, pp 95340C–95340C-8

Download references

Funding

This work was partially funded by National Natural Science Foundation of China (Nos. 61271314, 61372007, 61401286, and 61571193) and Guangdong Provincial Science and Technology Program—International Collaborative Projects (No. 2014A050503020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinghua Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

For this type of study, formal consent is not required, and this article does not contain patient data.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Q., Luo, Y. & Zhang, Q. Breast ultrasound image segmentation: a survey. Int J CARS 12, 493–507 (2017). https://doi.org/10.1007/s11548-016-1513-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-016-1513-1

Keywords

Navigation