Skip to main content
Log in

Ultrasound-navigated radiofrequency ablation of thyroid nodules with integrated electromagnetic tracking: comparison with conventional ultrasound guidance in gelatin models

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

A thyroid-like gelatin model was used to determine potential superiority of a new navigation system for ultrasound (US)-guided electrode insertion called EchoTrack, featuring a US probe with an integrated electromagnetic field generator, in comparison with conventional US when performing radiofrequency ablation.

Methods

In order to compare 20 navigated ablations with 20 ablations under conventional US guidance, a thyroid-like gelatin model was used. In each group, 10 in-plane and 10 out-of-plane punctures were performed. Metal seeds measuring 8.5 \(\times \) 1.8 mm served as ablation targets. The number of redirections until final electrode placement, targeting accuracy and electrode placement time were measured.

Results

The number of redirections could be significantly (\(p{<}0.0001\)) reduced from 2.7 ± 1.3 in the conventional group to 0.2 ± 0.5 in the EchoTrack group. Accuracy increased from 3.9 ± 4.7 to 2.0 ± 1.9 mm. The total placement time increased from 39 ± 20.5 to 79.2 ± 26 s.

Conclusions

EchoTrack is able to reduce the redirections needed to place the electrode in comparison with conventional US and provides high placement accuracy. Our new navigation system has high potential to reduce the risk of harming critical structures and to improve guidance during ablation of difficult nodules, as treatment planning as well as the safety of out-of-plane punctures are improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CT:

Computed tomography

EM:

Electromagnetic

FG:

Field generator

RFA:

Radiofrequency ablation

US:

Ultrasound

References

  1. Fuller CW, Nguyen SA, Lohia S, Gillespie MB (2013) Radiofrequency ablation for treatment of benign thyroid nodules: systematic review. Laryngoscope 124:346–353. doi:10.1097/MD.0000000000004659

    Article  PubMed  Google Scholar 

  2. De Bernardi IC, Floridi C, Muollo A, Giacchero R, Dionigi GL, Reginelli A, Gatta G, Cantisani V, Grassi R, Brunese L, Carrafiello G (2014) Vascular and interventional radiology radiofrequency ablation of benign thyroid nodules and recurrent thyroid cancers: literature review. Radiol Medica 119:512–520. doi:10.1007/s11547-014-0411-2

    Article  Google Scholar 

  3. Na DG, Lee JH, Jung SL, Kim J, Sung JY, Shin JH, Kim EK, Lee JH, Kim DW, Park JS, Kim KS, Baeck SM, Lee Y, Chong S, Sim JS, Huh JY, Bae J, Kim KT, Han SY, Bae MY, Kim YS, Baek JH (2012) Radiofrequency ablation of benign thyroid nodules and recurrent thyroid cancers: consensus statement and recommendations. Korean J Radiol 13:117–119

    Article  PubMed  PubMed Central  Google Scholar 

  4. Shin JH, Baek JH, Ha EJ, Lee JH (2012) Radiofrequency ablation of thyroid nodules: basic principles and clinical application. Int J Endocrinol 2012:1–7. doi:10.1155/2012/919650

    Article  Google Scholar 

  5. Jeong WK, Baek JH, Rhim H, Kim YS, Kwak MS, Jeong HJ, Lee D (2008) Radiofrequency ablation of benign thyroid nodules: safety and imaging follow-up in 236 patients. Eur Radiol 18:1244–1250. doi:10.1007/s00330-008-0880-6

    Article  PubMed  Google Scholar 

  6. Korkusuz Y, Erbelding C, Kohlhase K, Luboldt W, Happel C, Grünwald F (2016) Bipolar radiofrequency ablation of benign symptomatic thyroid nodules: initial experience. Rofo-Fortschr Rontg 188:671–675. doi:10.1055/s-0041-110137

    CAS  Google Scholar 

  7. Turtulici G, Orlandi D, Corazza A (2014) Percutaneous radiofrequency ablation of benign thyroid nodules assisted by a virtual needle tracking system. Ultrasound Med Biol 40:1447–1452. doi:10.1016/j.ultrasmedbio.2014.02.017

    Article  PubMed  Google Scholar 

  8. Baek JH, Kim YS, Lee D, Huh JY, Lee JH (2010) Benign predominantly solid thyroid nodules: prospective study of efficacy of sonographically guided radiofrequency ablation versus control condition. Am J Roentgenol 194:1137–1142. doi:10.2214/AJR.09.3372

    Article  Google Scholar 

  9. Yue W, Wang S, Wang B, Xu Q, Yu S, Yonglin Z, Wang X (2013) Ultrasound guided percutaneous microwave ablation of benign thyroid nodules: safety and imaging follow-up in 222 patients. Eur J Radiol 82:5–10. doi:10.1016/j.ejrad.2012.07.020

    Article  Google Scholar 

  10. Goldberg SN, Gazelle GS, Mueller PR (2000) Thermal ablation therapy for focal malignancy? A unified approach to underlying principles, techniques, and diagnostic imaging guidance. Am J Roentgenol 174:323–331. doi:10.2214/ajr.174.2.1740323

    Article  CAS  Google Scholar 

  11. Baek JH, Lee JH, Valcavi R, Pacella CM, Rhim H, Na DG (2011) Thermal ablation for benign thyroid nodules: radiofrequency and laser. Korean J Radiol 12:525. doi:10.3348/kjr.2011.12.5.525

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sindram D, McKillop IH, Martinie JB, Iannitti DA (2010) Novel 3-D laparoscopic magnetic ultrasound image guidance for lesion targeting. HPB 12:709–716. doi:10.1111/j.1477-2574.2010.00244.x

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wood BJ, Kruecker J, Abi-Jaoudeh N, Locklin JK, Levy E, Xu S, Solbiati L, Kapoor A, Amalou H, Venkatesan AM (2010) Navigation systems for ablation. J Vasc Interv Radiol 21:257–263. doi:10.1016/j.jvir.2010.05.003

  14. Franz AM, Haidegger T, Birkfellner W, Cleary K, Peters TM, Maier-Hein L (2014) Electromagnetic tracking in medicine: a review of technology, validation, and applications. IEEE Trans Med Imaging 33:1702–1725. doi:10.1109/TMI.2014.2321777

    Article  PubMed  Google Scholar 

  15. Sindram D, Swan RZ, Lau KN, McKillop IH, Iannitti DA, Martinie JB (2011) Real-time three-dimensional guided ultrasound targeting system for microwave ablation of liver tumours: a human pilot study. HPB 13:185–191. doi:10.1111/j.1477-2574.2010.00269.x

    Article  PubMed  PubMed Central  Google Scholar 

  16. Franz AM, Servatius M, Seitel A (2015) Navigated targeting of liver lesions: pitfalls of electromagnetic tracking. Biomed Eng 57:897–900. doi:10.1515/bmt-2012-4337

    Google Scholar 

  17. Poulin F, Amiot LP (2002) Interference during the use of an electromagnetic tracking system under OR conditions. J Biomech 35:733–737. doi:10.1016/S0021-9290(02)00036-2

    Article  PubMed  Google Scholar 

  18. Maier-Hein L, Franz AM, Birkfellner W, Hummel J, Gergel I, Wegner I, Meinzer HP (2012) Standardized assessment of new electromagnetic field generators in an interventional radiology setting. Med Phys 39:3424–3434. doi:10.1118/1.4712222

    Article  CAS  PubMed  Google Scholar 

  19. März K, Franz AM, Seitel A (2014) Interventional real-time ultrasound imaging with an integrated electromagnetic field generator. Int J Comput Assist Radiol Surg 9:759–768. doi:10.1007/s11548-014-0990-3

    Article  PubMed  Google Scholar 

  20. März K, Franz AM, Seitel A, Winterstein A, Bendl R, Zelzer S, Nolden M, Meinzer HP, Maier-Hein L (2013) MITK-US: real-time ultrasound support within MITK. Int J Comput Assist Radiol Surg 9:411–420. doi:10.1007/s11548-013-0962-z

    Article  PubMed  Google Scholar 

  21. Nolden M, Zelzer S, Seitel A, Wald D, Müller M, Franz AM, Maleike D, Fangerau M, Baumhauer M, Maier-Hein L, Maier-Hein KH, Meinzer HP, Wolf I (2013) The medical imaging interaction toolkit: challenges and advances. Int J Comput Assist Radiol Surg 8:607–620. doi:10.1007/s11548-013-0840-8

    Article  PubMed  Google Scholar 

  22. Moncharmont L, Moreau-Gaudry A, Medici M, Bricault I (2015) Phantom evaluation of a navigation system for out-of-plane CT-guided puncture. Diagn Interv Imaging 96:531–536. doi:10.1016/j.diii.2015.03.002

    Article  CAS  PubMed  Google Scholar 

  23. Mauri G, Solbiati L (2015) Virtual navigation and fusion imaging in percutaneous ablations in the neck. Ultrasound Med Biol 41:898. doi:10.1016/j.ultrasmedbio.2014.10.022

    Article  PubMed  Google Scholar 

  24. Orlandi D, Turtulici G (2015) Reply regarding virtual navigation and fusion imaging in percutaneous ablations in the neck. Ultrasound Med Biol 41:899. doi:10.1016/j.ultrasmedbio.2014.11.013

    Article  PubMed  Google Scholar 

  25. Franz AM, Simpfendörfer T, Garoussi C, Majlesara A, März K, Meinzer H, Mehrabi A, Teber D, Maier-Hein L (2015) EchoTrack for simultaneous EM tracking and US imaging: initial experience in ventilated swine cadaver. In: International Journal of Computer Assisted Radiology and Surgery, Barcelona, Spain, pp 1–312

  26. Franz AM, März K, Hummel J, Birkfellner W, Bendl R, Delorme S, Schlemmer HP, Meinzer HP, Maier-Hein L (2012) Electromagnetic tracking for US-guided interventions: standardized assessment of a new compact field generator. Int J Comput Assist Radiol Surg 7:813–818. doi:10.1007/s11548-012-0740-3

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was carried out with the support of the German Research Foundation (DFG) as part of project A02, SFB/TRR 125 Cognition-Guided Surgery.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Erbelding.

Ethics declarations

Conflict of interest

Christian Erbelding, Konstantin Kohlhase and Prof. Dr. Frank Grünwald from the Department of Nuclear Medicine, University Hospital Frankfurt/Main, Germany, have nothing to disclose. Dr. Alfred Franz, Dr. Alexander Seitel, Ms. Nasrin Bopp and Prof. Dr. Lena Maier-Hein, as members of the Junior Group Computer-assisted Interventions, German Cancer Research Center, DKFZ, Heidelberg, Germany, were supported by the German Research Foundation (DFG) as part of project A02, SFB/TRR 125 Cognition-Guided Surgery.

Human and animal rights statement

There were no human participants and/or animals involved in this study.

Informed consent

As there were no patients in this study, no informed consent was obtained in the course of this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erbelding, C., Franz, A., Seitel, A. et al. Ultrasound-navigated radiofrequency ablation of thyroid nodules with integrated electromagnetic tracking: comparison with conventional ultrasound guidance in gelatin models. Int J CARS 12, 1635–1642 (2017). https://doi.org/10.1007/s11548-017-1544-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-017-1544-2

Keywords

Navigation