Skip to main content

Advertisement

Log in

A software solution to dynamically reduce metallic distortions of electromagnetic tracking systems for image-guided surgery

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Electromagnetic tracking systems (EMTS) have achieved a high level of acceptance in clinical settings, e.g., to support tracking of medical instruments in image-guided interventions. However, tracking errors caused by movable metallic medical instruments and electronic devices are a critical problem which prevents the wider application of EMTS for clinical applications.

Methods

We plan to introduce a method to dynamically reduce tracking errors caused by metallic objects in proximity to the magnetic sensor coil of the EMTS. We propose a method using ramp waveform excitation based on modeling the conductive distorter as a resistance-inductance circuit. Additionally, a fast data acquisition method is presented to speed up the refresh rate.

Results

With the current approach, the sensor’s positioning mean error is estimated to be 3.4, 1.3 and 0.7 mm, corresponding to a distance between the sensor and center of the transmitter coils’ array of up to 200, 150 and 100 mm, respectively. The sensor pose error caused by different medical instruments placed in proximity was reduced by the proposed method to a level lower than 0.5 mm in position and \(0.8^{\circ }\) in orientation. By applying the newly developed fast data acquisition method, we achieved a system refresh rate up to approximately 12.7 frames per second.

Conclusions

Our software-based approach can be integrated into existing medical EMTS seamlessly with no change in hardware. It improves the tracking accuracy of clinical EMTS when there is a metallic object placed near the sensor coil and has the potential to improve the safety and outcome of image-guided interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Wood BJ, Zhang H, Durrani A, Glossop N, Ranjan S, Lindisch D, Levy E, Banovac F, Borgert J, Krueger S, Kruecker J, Viswanathan A, Cleary K (2005) Navigation with electromagnetic tracking for interventional radiology procedures: a feasibility study. J Vasc Interv Radiol 16:493–505. doi:10.1097/01.RVI.0000148827.62296.B4

    Article  PubMed  PubMed Central  Google Scholar 

  2. Shahriari N, Hekman E, Oudkerk M, Misra S (2015) Design and evaluation of a computed tomography (CT)-compatible needle insertion device using an electromagnetic tracking system and CT images. Int J Comput Assist Radiol Surg 10:1845–1852. doi:10.1007/s11548-015-1176-3

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sorger H, Hofstad EF, Amundsen T, Langø T, Leira HO (2016) A novel platform for electromagnetic navigated ultrasound bronchoscopy (EBUS). Int J Comput Assist Radiol Surg 11:1431–1443. doi:10.1007/s11548-015-1326-7

    Article  PubMed  Google Scholar 

  4. Watzinger F, Birkfellner W, Wanschitz F, Millesi W, Schopper C, Sinko K, Huber K, Bergmann H, Ewers R (1999) Positioning of dental implants using computer-aided navigation and an optical tracking system: case report and presentation of a new method. J Craniomaxillofac Surg 27:77–81

    Article  CAS  PubMed  Google Scholar 

  5. Boutaleb S, Racine E, Fillion O, Bonillas A, Hautvast G, Binnekamp D, Beaulieu L (2015) Performance and suitability assessment of a real-time 3D electromagnetic needle tracking system for interstitial brachytherapy. J Contemp Brachytherapy 7:280–289. doi:10.5114/jcb.2015.54062

    Article  PubMed  PubMed Central  Google Scholar 

  6. Birkfellner W, Watzinger F, Wanschitz F, Enislidis G, Kollmann C, Rafolt D, Nowotny R, Ewers R, Bergmann H (1998) Systematic distortions in magnetic position digitizers. Med Phys 25:2242. doi:10.1118/1.598425

    Article  CAS  PubMed  Google Scholar 

  7. Nafis C, Jensen V, Beauregard L, Anderson P (2006) Method for estimating dynamic EM tracking accuracy of surgical navigation tools. In: Cleary KR, Galloway Jr. RL (eds) Medical imaging, vol 6141, pp 152–167. doi:10.1117/12.653448

  8. Kuchel PW, Chapman BE, Bubb WA, Hansen PE, Durrant CJ, Hertzberg MP (2003) Magnetic susceptibility: solutions, emulsions, and cells. Concepts Magn Reson 18A:56–71. doi:10.1002/cmr.a.10066

    Article  CAS  Google Scholar 

  9. Garikepati P, Chang TT, Jiles DC (1988) Theory of ferromagnetic hysteresis: evaluation of stress from hysteresis curves. IEEE Trans Magn 24:2922–2924. doi:10.1109/20.92289

    Article  Google Scholar 

  10. Poulin F, Amiot L-PL-P (2002) Interference during the use of an electromagnetic tracking system under OR conditions. J Biomech 35:733–7. doi:10.1016/S0021-9290(02)00036-2

    Article  PubMed  Google Scholar 

  11. Kindratenko VV (2000) A survey of electromagnetic position tracker calibration techniques. Virtual Real 5:169–182. doi:10.1007/BF01409422

    Article  Google Scholar 

  12. Plotkin A, Kucher V, Horen Y, Paperno E (2008) A new calibration procedure for magnetic tracking systems. IEEE Trans Magn 44:4525–4528. doi:10.1109/TMAG.2008.2003056

    Article  Google Scholar 

  13. Dumoulin CL (2001) Error compensation for device tracking systems employing electromagnetic fields. Patent US 6,201,987

  14. Jascob B, Kessman P, Simon D, Smith A (2003) Method and apparatus for electromagnetic navigation of a surgical probe near a metal object. Patent US 6,636,757

  15. Rolland JP, Larry DD, Bailot Y (2001) A survey of tracking technology for virtual environments. In: Barfield W, Caudell T (eds) Fundamentals of wearable computers and augmented reality. CRC Press, New Jersey, p 836

  16. Anderson PT (2010) Ultra-low frequency electromagnetic tracking system. Patent US 7,761,100

  17. Hansen PK, Ashe WS (1998) Magnetic field position and orientation measurement system with dynamic eddy current rejection. Patent US 5,767,669

  18. Paperno E, Sasada I, Leonovich E (2001) A new method for magnetic position and orientation tracking. IEEE Trans Magn 37:1938–1940. doi:10.1109/20.951014

    Article  Google Scholar 

  19. Bien T, Li M, Salah Z, Rose G (2014) Electromagnetic tracking system with reduced distortion using quadratic excitation. Int J Comput Assist Radiol Surg 9:323–32. doi:10.1007/s11548-013-0925-4

    Article  PubMed  Google Scholar 

  20. Nieminen JM, Kirsch SR (2010) Eddy current detection and compensation. Patent US 7,783,441

  21. Hajimiri A (2010) Generalized Time- and Transfer-Constant Circuit Analysis. IEEE Trans Circuits Syst I Regul Pap 57:1105–1121. doi:10.1109/TCSI.2009.2030092

    Article  Google Scholar 

  22. Doetsch G (1974) Introduction to the theory and application of the Laplace transformation. doi:10.1007/978-3-642-65690-3

  23. Rosa EB (1908) The self and mutual inductances of linear conductors. In: Bulletin Bureau Stand. U.S. Dept. of Commerce and Labor, Bureau of Standards, pp 302–305

  24. Meade RL (2002) Foundations of electronics. Cengage Learning, Boston, USA

    Google Scholar 

  25. Raab F, Blood E, Steiner T, Jones H (1979) Magnetic position and orientation tracking system. IEEE Trans Aerosp Electron Syst AES 15:709–718. doi:10.1109/TAES.1979.308860

    Article  Google Scholar 

  26. Li M, Bien T, Rose G (2013) FPGA based electromagnetic tracking system for fast catheter navigation. Int J Sci Eng Res 4:2566–2570. doi:10.14299/ijser.2013.09.001

    Google Scholar 

  27. Adelstein BD, Johnston ER, Ellis SR (1996) Dynamic response of electromagnetic spatial displacement trackers, vol 5, no 3. Presence, Cambridge

    Google Scholar 

  28. Frantz DD, Wiles AD, Leis SE, Kirsch SR (2003) Accuracy assessment protocols for electromagnetic tracking systems. Phys Med Biol 48(14):2241–2251

    Article  CAS  PubMed  Google Scholar 

  29. Wiles AD, Thompson DG, Frantz DD (2004) Accuracy assessment and interpretation for optical tracking systems. In: Galloway Jr RL (ed) SPIE medical international society for optics and photonics, imaging, pp 421–432

  30. Hummel J, Figl M, Birkfellner W, Bax MR, Shahidi R, Maurer CR, Bergmann H (2006) Evaluation of a new electromagnetic tracking system using a standardized assessment protocol. Phys Med Biol 51:N205-10. doi:10.1088/0031-9155/51/10/N01

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The work of this paper is partly funded by the Federal Ministry of Education and Research within the Forschungscampus STIMULATE under Grant Number ‘13GW0095A’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengfei Li.

Ethics declarations

Conflict of interest

Mengfei Li, Christian Hansen and Georg Rose declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Hansen, C. & Rose, G. A software solution to dynamically reduce metallic distortions of electromagnetic tracking systems for image-guided surgery. Int J CARS 12, 1621–1633 (2017). https://doi.org/10.1007/s11548-017-1546-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-017-1546-0

Keywords

Navigation