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Abstract

Purpose—How to optimally detect bilateral mammographic asymmetry and improve risk 

prediction accuracy remains a difficult and unsolved issue. Our aim was to find an effective 

mammographic density segmentation method to improve accuracy of breast cancer risk prediction.

Methods—A dataset including 168 negative mammography screening cases was used. We 

applied a mutual threshold to bilateral mammograms of left and right breasts to segment the dense 

breast regions. The mutual threshold was determined by the median grayscale value of all pixels in 

both left and right breast regions. For each case, we then computed three types of image features 

representing asymmetry, mean and the maximum of the image features, respectively. A two-stage 

classification scheme was developed to fuse three types of features. The risk prediction 

performance was tested using a leave-one-case-out cross-validation method.

Results—By using the new density segmentation method, the computed area under the receiver 

operating characteristic curve was 0.830±0.033 and overall prediction accuracy was 81.0%, 

significantly higher than those of 0.633±0.043 and 57.1% achieved by using the previous density 

segmentation method (p < 0.01, t-test).

Conclusions—A new mammographic density segmentation method based on a bilateral mutual 

threshold can be used to more effectively detect bilateral mammographic density asymmetry and 

help significantly improve accuracy of near-term breast cancer risk prediction.
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I. INTRODUCTION

Due to the potential harmful effects of cumulative radiation exposure [1], unnecessary 

biopsies [2], high cost and limited healthcare resources [3], the current population-based 

mammography screening paradigm remains quite controversial [4]. In order to solve this 

clinical dilemma, developing an optimal breast cancer screening paradigm to detect early 

cancers has attracted extensive research interest recently [5].

The success of establishing an optimal personalized breast cancer screening paradigm 

depends on developing a reliable risk prediction model. Although many epidemiology study-

based breast cancer risk models, such as Gail, Claus, and Tyrer-Cuzick model [6] have been 

developed, they typically aim to assess the risk of a woman developing breast cancer in a 

long term or lifetime. Thus, it is required to develop new models that have higher 

discriminatory power in predicting the risk of individual women developing breast cancer in 

the near-term [7]. Based on the computed quantitative image features, several research 

groups have developed and tested a number of new risk stratification models to predict 

breast cancer risk [8–12]. These image features could be divided into two major categories: 

unilateral features (depicting the information of every single breast mammogram), and 

concurrent features (describing the asymmetry of bilateral mammograms of left and right 

breasts) [13]. Using unilateral features, including mammographic texture and density 

features, has shown the value in breast cancer risk assessment [14]. A recent study also 

demonstrated a moderately high positive association between the risk prediction scores 

generated by the mammographic density related image feature analysis and the actual risk of 

women having an image-detectable breast cancer in the next subsequent examinations [10]. 

Despite that mammographic density has the highest discriminatory power besides women’s 

age in the existing epidemiology-based risk models [6], its discriminatory power at the 

individual level remains low and controversial [15,16].

In our studies, we hypothesized that bilateral mammographic density asymmetry may be an 

important indicator of breast cancer development [4]. To test this hypothesis, we have 

preliminarily investigated computerized methods to detect bilateral mammographic density 

asymmetry features and the potential of using asymmetry scores to predict near-term breast 

cancer risk [13, 17, 18]. However, how to optimally detect bilateral mammographic 

asymmetry and improve risk prediction accuracy remains a difficult and unsolved issue.

In this study, we investigated a new bilateral mammographic asymmetry detecting approach 

and tested whether it can help significantly improving the performance of near-term breast 

cancer risk prediction. Specifically, we proposed to use a single “mutual” threshold to 

bilateral mammograms of left and right breasts to segment dense breast regions and compute 

relevant image features, and developed a unique two-stage classification scheme to fuse the 

image features for breast cancer risk prediction.

II. Materials

We retrospectively assembled an image dataset, which includes two sequential 

mammographic screening examinations acquired from 168 women. Each examination 
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includes two full-field digital mammography (FFDM) images representing the craniocaudal 

(CC) view of the left and right breasts. All images were acquired using Hologic Selenia 

FFDM systems (Hologic Inc., Bedford, MA, USA).

For each case (woman), the first (“prior”) examination and the next (“current”) examination 

were acquired within a time lag of 12–36 months. All the “prior” examinations were 

interpreted by radiologists as “negative”. Among the “current” examinations, 83 were 

positive cases with cancer verified and 85 were negative (cancer-free) cases. The average 

ages and standard deviations were 57.5±11.8 and 52.5±10.9 years old for the positive and 

negative groups of women, respectively. In this study, only “prior” screening images were 

used for computing features and building prediction models, which were divided into two 

different classes based on their status in the “current” examinations.

In this study, we only focused on predicting whether women will develop breast cancers in 

the next sequential screening after the first negative screening. It was not validated whether 

the “negative” cases remained in the “cancer-free” status in the third sequential 

examinations.

III. Methods

The new risk model was developed using four steps including (1) segmenting breast regions, 

(2) creating local pixel value fluctuation maps, (3) computing image features, and (4) 

optimizing classification scheme.

A. Breast Region Segmentation

For each case, a pair of bilateral CC view images were analyzed. We applied an automatic 

segmentation scheme on each image to extract the whole breast region as described in [19, 

20]. In brief, a gray level histogram of the image was plotted and an iterative searching 

method was used to detect the smoothest curvature between the breast tissue and 

background or air region. The pixels in the background were discarded and the skin region 

was removed by a morphological erosion operation (Fig.1). In addition, we also segmented 

the dense breast region from each image. In the previous studies, the dense breast region of 

each image (left or right mammographic image) was defined as the region that encompasses 

the pixel values above the median value of the whole breast region[7,21–22]. In these 

studies, dense regions of left and right mammographic images were segmented using their 

respective medians as thresholds. It was found that some individual features computed for 

the dense breast areas showed good correlation with the radiologists’ ratings [21] and some 

texture features computed on the dense breast regions are most effective for breast cancer 

risk prediction [7]. In this study, we also used median value for thresholding to take its 

advantage, but in a different way. It is possible that the thresholding method used in previous 

studies may reduce the capability of detecting bilateral density asymmetry. In this study, we 

used a single “mutual” threshold, instead of two different thresholds, to segment dense 

regions from left and right mammographic images (Fig.1). The “mutual” threshold was 

defined as median grayscale value of all pixels in the whole breast regions of both left and 

right mammographic images. This was done to investigate a new approach aiming to more 

accurately detect bilateral mammographic density or tissue asymmetry and test whether it 
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can help further improve the performance of applying quantitative image feature analysis 

methods to predict near-term breast cancer risk.

B. Local Pixel Value Fluctuation Map Generation

In order to compute image features of higher predictive power, we generated local pixel 

value fluctuation (LPVF) maps for each image by applying a 5×5 square convolution kernel 

to scan the image with the segmented whole breast region and dense breast region, 

respectively (Fig.1). The absolute pixel value differences between the center pixel and each 

of the other pixels inside the kernel were computed. The maximum difference value 

computed inside the kernel was used to replace the original pixel value in the map (center 

pixel). As a result, unlike the original mammogram, the generated LPVF map can better 

show the image features related to the pixel value fluctuation and/or the local density 

variation, which may provide useful and complementary information to the image features 

acquired or computed from the original mammogram. Similar image conversion method was 

also used in [4, 18].

C. Image Feature Computation

Various studies have analyzed the correlation of mammographic image features with breast 

cancer risk [23–26]. In this study, we computed some features that have been proposed in the 

literature, as well as redefined some existing features and explored some new features that 

have never been examined for breast cancer risk prediction.

For each case, after reducing the gray level range of the original mammographic images 

from 4,096 to 256 gray levels, we computed the same 220 features from (1) whole breast 

regions and (2) dense breast regions in the original bilateral CC view images, which are 

named as WBR-ORG and DBR-ORG images, respectively, (3) whole breast regions and (4) 

dense breast regions in the bilateral LPVF maps, which are named as WBR-LPVF and 

DBR-LPVF maps, respectively. In the following, these features will be name as NFi (i = 1,2,

…,220×4). For comparison, we also computed the same 220×4 features from the original 

mammographic images and the LPVF maps in which the dense breast regions were 

segmented by applying two different thresholds separately to two bilateral mammograms 

(previous segmentation method). These features will be name as PFi (i = 1,2,…,220×4).

Each group of 220 features were divided into three distinct types namely: (1) 76 asymmetry 

features, which were represented by the absolute subtraction of two matched bilateral feature 

values computed from the left and right images; (2) 72 mean features, which were computed 

by taking average value of two matched bilateral feature values; and (3) 72 maximum 

features, which were represented by the greater one of two matched bilateral feature values.

1) Asymmetry Features—The asymmetry features can be divided into five subgroups. 

The first subgroup include 13 image statistics based features (NFi and PFi, i = 1,2,…,13) 

[17], which are average local value fluctuation of gray level histogram, mean of gray level 

histogram values, standard deviation of gray level histogram values, statistics based features 

computed from the pixel value distributions of the ROI (region of interest) including mean 

value, variance, standard deviation, skewness, kurtosis, energy, and entropy, statistics based 
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features computed from the local pixel value fluctuation map of the ROI including mean 

value, standard deviation, and skewness.

The second subgroup includes 4 fractal dimension related breast tissue composition features 

(NFi and PFi, i = 14,15,16,17) [21], which are estimated with variation method, 

mathematical morphology, two slopes of fitting lines using textural edgeness and Gaussian 

subtraction.

The third subgroup has 39 texture related image features (NFi and PFi, i = 18,19,…,56) [27], 

which include 8 Gray-level co-occurrence matrix based features, 13 Gray-level run-length 

matrix based features, 13 Gray-level size zone matrix based features, and 5 Neighborhood 

gray-tone difference matrix based features.

The fourth subgroup includes 16 features (NFi and PFi, i = 57,58,…,72) modified from those 

used in [17] to compute a variety of percentage of mammographic density (PMD) for 

mimicking Breast Imaging Reporting and Data System (BIRADS) used in clinical practice. 

These features are defined and computed as following: NF57 (or PF57) = NHA/NU, NF58 (or 

PF58) = NHA/NU, NF59 (or PF59) = NHA/NB and NF60 (or PF60) = NHA/NB. Where, NU is 

the total number of pixels in the ROI of left or right breast; NB is the total number of pixels 

in the ROIs of both left and right breasts. For NF57 and NF59, NHA is the number of pixels in 

the ROI of left or right breast with gray value larger than the average value of all pixels in 

the ROIs of both left and right breasts. For PF57 and PF59 NHA is the number of pixels in the 

ROI of left or right breast with gray value larger than the average value of all pixels in the 

ROI. For NF58 and NF60, NHM is the number of pixels in the ROI of left or right breast with 

gray value larger than the median value of all pixels in the ROIs of both left and right 

breasts. For PF58 and PF60, NHM is the number of pixels in the ROI of left or right breast 

with gray value larger than the median value of all pixels in the ROI. These 4 features are 

redefined from a feature used in Ref 25.

Next, to mimic BIRADS, we computed 3 features (NFi (or PFi) = IK/IS,i = 61,62,63). 

Specifically, IS is the average gray value of all breast tissue pixels in one image and IK are 

the average gray values of the pixels whose gray values are under the threshold of K = 25%, 

50%, 75% of the maximum breast tissue pixel value in the image, respectively. In addition, 

we also computed other 3 features (NFi(or PFi) = NK/NS,i = 64,65,66), where NS is the total 

number of breast tissue pixels in a single image and NK are numbers of pixels whose gray 

values are under the threshold of K = 25%, 50%, 75% of the maximum pixel value in the 

image, respectively. Similarly, we also computed another set of 6 features combining all 

pixels in two bilateral images (NFi(or PFi) = IK/IB,i = 67,68,69) and (NFi(or PFi) = NK/NB,i 
= 70,71,72), where IB is the average pixel value of total breast tissue pixels (NB) of both left 

and right mammograms.

The last subgroup includes 4 newly explored features (NFi or PFi, i = 73,74,75,76) which are 

defined and computed as following:
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, where  and  are the maximum 

breast tissue pixel values in the left and right images, respectively; GVh is the number of 

gray levels in the ROI of left or right breast, in which the maximum pixel value is higher. 

Specifically, if , GVh refers to the number of gray levels in the ROI of the 

left breast; otherwise GVh refers to the number of gray levels in the ROI of the right breast.

Where, Ng is the number of pixels in the ROI of higher maximum pixel value with gray 

values higher than the maximum pixel value of another ROI; Nh is the total number of pixels 

in the ROI of higher maximum pixel value. Specifically, if , Ng refers to the 

number of pixels in the ROI of the left breast with gray values higher than  and Nh 

refers to the number of pixels in the ROI of the left breast; otherwise Ng refers to the number 

of pixels in the ROI of the right breast with gray values higher than  and Nh refers to 

the number of pixels in the ROI of the right breast.

From each pair of matched ROIs, the first 72 asymmetry features were independently 

computed for the left and right breasts. Each asymmetry feature was computed by the 

absolute difference of two feature values computed from the two matched ROIs. The last 4 

asymmetry features were computed directly from each pair of matched ROIs.

2) Mean Features—This type includes 72 features (NF77 to NF148 (or PF77 to PF148)), 

which were similar to the first 72 features in type 1 (NF1 to NF72 (or PF1 to PF72)). From 

each of two matched ROIs of left and right breasts, each of the 72 features was 

independently computed. Then, the average of two values of the same feature was used to 

represent the mean feature.

3) Maximum Features—This type includes another set of 72 features (NF149 to NF220 (or 

PF149 to PF220)), which were similar to the features in type 1 (NF1 to NF72 (or PF1 to 

PF72)). From each of two matched ROIs of left and right breasts, each of the 72 features was 

also independently computed. Then, the greater one of the two values of the same feature 

was chosen to represent the maximum feature.

D. Risk Prediction and Performance Assessment

The mean and standard deviation of values of different features may vary widely. In order to 

compare different features, a normalization process was applied for each feature to 

normalize the values to the range of 0 to 1. Similar normalization process was applied in [17, 

18]. We used two analysis approaches to assess discriminatory power of these features to 

predict near-term breast cancer risk. In the first approach, we split the feature data 168 times 

and aggregated the validation performance of all splits. In each split, data of 167 cases were 
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used for “optimal” feature selection (redundant and uninformative features may downgrade 

the classification accuracy) and data of the left out 1 case was used to test discriminatory 

power of the “optimal” features. In the feature selection step, the cross-validation method 

was carried out by using a publicly available WEKA data mining and machine learning 

software package [28]. In the validation step, the “optimal” features of the test case were 

fused with 3 simple methods (taking the average, maximum, and minimum value) [29] to 

generate 3 new classification scores, which were used for validating the prediction 

performance. The feature selection and performance validation protocol is characterized by a 

‘double-cross-validation-loop’: an inner selection loop and an outer validation loop [30,31]. 

Prediction performance of the new classification scores of all 168 cases was assessed with 

an area under a receiver operating characteristic curve (AUC). The AUCs were computed 

applying a publically available ROC curve fitting program (ROCKIT, http://www-

radiology.uchicago.edu/krl/).

In the second analysis approach, we trained a “two-stage” classification scheme using 

WEKA. As shown in Fig. 2. In the first stage, 3 ANNs (Artificial Neural Networks) were 

independently trained using the 76×4 = 304 asymmetry features, 72×4 = 288 mean features, 

and 72×4 = 288 maximum features, respectively. In the second stage, the 3 sets of scores 

produced by the 3 ANNs was further fused by another ANN to derive the final risk 

prediction scores. For comparison, we also trained another “one-stage” ANN, which was 

built using the mixed pool of all three types of features.

In using WEKA, we chose the classifier of “AttributeSelectedClassifier” to integrate the 

normalized Gaussian Radial Basis Function Network (RBFN) as a base classifier, the 

wrapper subset evaluator (WSE) as a feature evaluator, and the “BestFirst” (searches the 

space of feature subsets by greedy hillclimbing augmented with a backtracking facility) as a 

feature search method. RBFN has drawn much attention due to its good generalization 

ability and simple network structure [32]. Past research has shown that any nonlinear 

function over a compact set with arbitrary accuracy can be approximated by RBFN [33]. In 

this study, the ANNs were trained using a leave-one-case-out (LOCO) based cross-validation 

method [34]. In each of LOCO training/testing iterations, 1 case was selected as an 

independent testing case and the remaining 167 cases were used as a training dataset. 

Feature selection was performed on the training dataset (redundant and uninformative 

features may downgrade the classification accuracy) and the selected features were then 

used to train a RBFN based classifier. The trained classifier was applied to the testing case to 

generate a risk prediction score ranging from 0 to 1. According to this validation method, in 

each training and testing iteration cycle, different image features may be selected from the 

initial feature pool and used to build a corresponding classifier.

We used AUC and prediction accuracy to compare performance of the asymmetry feature 

based classifier, mean feature based classifier, the maximum feature based classifier, the 

one-stage classification scheme, and the two-stage classification scheme. We compared the 

prediction accuracy on “positive”, “negative”, and all cases by applying a threshold of 0.5 on 

the classification scores to divide the 168 testing cases into two predicted groups.
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IV. RESULTS

Table 1 compares two sets of AUCs yielded by 8 schemes. Using the previous segmentation 

method, AUCs ranged from 0.603±0.043 to 0.641±0.042. Using the new segmentation 

method, AUCs ranged from 0.603±0.043 to 0.830±0.033, which yields a significantly higher 

maximum AUC value (p < 0.01, t-test). Fig. 3 shows 2 sets of ROC curves generated using 

the classification scores yielded by 5 ANN-based classification schemes. Fig. 4 compares 

two ROC curves generated using the classification scores yielded by the two-stage 

classification scheme. By using the new segmentation methods, AUC was significantly 

increased from 0.633±0.043 to 0.830±0.033 (p < 0.01, t-test).

Table 2 summarizes the prediction accuracy values yielded by 5 classification schemes. The 

right column shows 5 groups of prediction accuracy values yielded by using the previous 

dense breast tissue segmentation method, which are comparable with relatively low overall 

prediction accuracy (i.e., ≤ 60%). When using the new dense breast tissue segmentation 

method, the overall prediction accuracy was significantly increased (p < 0.01, t-test). For 

example, using the “two-stage” ANN-based classifier, it reached 81%. Table 2 also shows 

that the prediction accuracy for the positive cases is substantially higher than that for the 

negative cases (95.2% versus 67.1%).

V. DISCUSION

The contribution of this study is that we successfully demonstrated that a “mutual” threshold 

approach could play a surprisingly important role to significantly improve performance of 

near-term breast cancer risk prediction.

It was demonstrated that bilateral mammographic density asymmetry was a significantly 

stronger breast cancer risk factor than woman’s age, and mammographic density rated or 

assessed based on single images by either radiologists (BIRADS) or computerized schemes 

[18]. Thus, this study aims to investigate a new bilateral mammographic asymmetry 

detecting approach with and an assumption that it can help improving near-term breast 

cancer prediction. The assumption is based on several underlying scientific evidences and 

validated experimental observations: (1) mammographic tissue asymmetry is an important 

radiographic image phenotype related to the biological processes [35], (2) radiologists 

routinely examine the bilateral mammographic tissue asymmetry pattern and change over 

time when making clinical decisions [36].

We observed in the literature that image features computed from the dense mammographic 

regions had higher discriminatory power than those computed from the whole 

mammographic regions. However, how to optimally segment dense mammographic regions 

is important, which determines the subsequently computed image features. In this study, we 

developed a new mammographic image segmentation approach, in which the dense breast 

regions of bilateral mammograms were segmented using a “mutual” threshold instead of two 

individual thresholds. The threshold was determined according to the pixel grayscale value 

distribution of the CC view images of both left and right breasts.
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From our study, we can make the following observations. First, by using the new “mutual” 

threshold segmentation method, bilateral mammographic density asymmetry related image 

features can be more sensitively detected and the discriminatory power of these features can 

be increased.

Second, previous study reported that using the maximum features to train an ANN yielded 

higher performance than the ANN trained using the bilateral asymmetrical features. 

However, we observed in this study, by using our new segmentation approach, the ANN 

trained using asymmetry features yielded much higher performance than the ANNs trained 

using the maximum features (Table 1). Therefore, defining an optimal dense mammographic 

region segmentation method is important for developing an optimal near-term breast cancer 

risk model.

Third, we observed that asymmetry, mean, and the maximum features of two bilateral 

images might contain complementary information. As a result, comparing to training one 

large integrated ANN using all three types of features, developing a two-stage ANN based 

classifier that fuses the prediction outcomes of 3 ANNs, which were separately trained with 

3 types of features, yielded much higher prediction performance (AUC=0.830±0.033 vs 

AUC=0.813±0.034). The AUC is much higher than that of 0.633±0.043 achieved by using 

the previous density segmentation method and those of 0.761±0.025 and 0.725±0.018 

reported in [18] and [21] achieved by using image features related to bilateral 

mammographic asymmetry for breast cancer prediction.

Last, we also observed that by using the proposed two-stage classification scheme, the 

prediction accuracy for the “positive” cases was substantially higher than that for the 

“negative” cases (95.2% versus 67.1%). This observation indicates high sensitivity and 

lower specificity, which is a potentially weakness of applying this risk prediction model in 

the real screening environment. Thus, improving specificity is important to improve efficacy 

of mammography screening. This is our goal in the future.

Despite the promising results and new observations, this study is with a number of 

limitations. First, the size of the dataset used is small and the ratio between positive and 

negative cases also does not represent the actual cancer prevalence ratio. Hence, the clinical 

utility of our new risk model needs to be eventually tested in future large prospective studies. 

Second, studies have shown that age is an important breast cancer risk factor [18] and 

association between mammographic density and breast cancer may be weaker in women 

with larger breasts [37]. In this study, we didn`t incorporate age and breast size as features in 

our new risk model or check their influence on the prediction accuracy. We will take them 

into account in the future study work. Third, only RBFN based ANN was trained and tested. 

Other machine learning methods can be developed for this purpose too.

In summary, we tested and demonstrated a new quantitative image segmentation and feature 

analysis approach to more accurately detect bilateral mammographic density asymmetry, as 

well as to improve performance in predicting near-term breast cancer risk. The initial testing 

results are promising. However, the robustness of this new approach and risk prediction 
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model needs to be further evaluated before it can be clinically acceptable to help establish a 

new optimal and personalized breast cancer screening paradigm.
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Fig. 1. 
Example of a positive case acquired from the “prior” screening examination. It shows the 

segmented whole breast regions of original images (top left) and local pixel value fluctuation 

maps (top right), dense breast regions of original images segmented with the new 

segmentation method (middle left) and previous segmentation method (middle right), dense 

breast regions of local pixel value fluctuation maps segmented with the new segmentation 

method (bottom left) and previous segmentation method (bottom right).
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Fig. 2. 
A two-stage “scoring fusion” RBFN-based ANN classification scheme, whereby the final 

classification score is derived by optimally fusing the prediction scores produced by 3 ANNs 

trained using bilateral asymmetrical features, mean features, and the maximum features, 

respectively. In the ANNs, the circles and black dots represent artificial neurons analogous 

to human neural units, the connecting lines represent links between adjacent artificial 

neurons analogous to neural axons.
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Fig. 3. 
Comparison of receiver operating characteristic (ROC) curves generated by 5 breast cancer 

risk prediction schemes. Left and right correspond to the previous and new dense breast 

region segmentation methods, respectively
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Fig. 4. 
Comparison of receiver operating characteristic (ROC) curves generated by the proposed 

two-stage classification scheme. Two curves correspond to the previous and new dense 

breast region segmentation methods, respectively
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TABLE 1

Comparison of AUC values and corresponding standard deviations of 8 different prediction schemes by using 

2 dense breast region segmentation methods.

Feature fusion method New dense breast region 
segmentation method

Previous dense breast region 
segmentation method

Scheme 1 (Taking maximum value of the selected features) 0.603±0.043 0.603±0.043

Scheme 2 (Taking minimum value of the selected features) 0.690±0.040 0.606±0.043

Scheme 3 (Taking mean value of the selected features) 0.640±0.043 0.621±0.043

Scheme 4 (one-stage classification scheme) 0.813±0.034 0.641±0.042

Scheme 5 (asymmetry feature based classifier) 0.807±0.035 0.623±0.043

Scheme 6 (mean feature based classifier) 0.657±0.043 0.603±0.043

Scheme 7 (maximum feature based classifier) 0.704±0.040 0.616±0.043

Scheme 8 (two-stage classification scheme) 0.830±0.033 0.633±0.043
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TABLE 2

Comparison of the overall prediction accuracy, prediction accuracy for the case groups with and without breast 

cancer of 5 different prediction schemes by using 2 dense breast region segmentation methods.

Feature fusion method

Overall prediction accuracy, prediction accuracy for cases with cancer, and prediction 
accuracy for cases without cancer (%)

New dense breast region segmentation 
method

Previous dense breast region segmentation 
method

Scheme 4 (one-stage classification scheme) 59.5 55.9

42.2 38.6

76.5 72.9

Scheme 5 (asymmetry feature based classifier) 54.2 60.7

36.1 42.2

71.8 78.8

Scheme 6 (mean feature based classifier) 50.0 54.2

62.7 38.6

37.6 69.4

Scheme 7 (maximum feature based classifier) 69.0 57.1

60.2 38.6

77.6 75.3

Scheme 8 (two-stage classification scheme) 81.0 57.1

95.2 60.2

67.1 54.1
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