Skip to main content

Advertisement

Log in

Planning of skull reconstruction based on a statistical shape model combined with geometric morphometrics

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Virtual reconstruction of large cranial defects is still a challenging task. The current reconstruction procedures depend on the surgeon’s experience and skills in planning the reconstruction based on mirroring and manual adaptation. The aim of this study is to propose and evaluate a computer-based approach employing a statistical shape model (SSM) of the cranial vault.

Methods

An SSM was created based on 131 CT scans of pathologically unaffected adult crania. After segmentation, the resulting surface mesh of one patient was established as template and subsequently registered to the entire sample. Using the registered surface meshes, an SSM was generated capturing the shape variability of the cranial vault. The knowledge about this shape variation in healthy patients was used to estimate the missing parts. The accuracy of the reconstruction was evaluated by using 31 CT scans not included in the SSM. Both unilateral and bilateral bony defects were created on each skull. The reconstruction was performed using the current gold standard of mirroring the intact to the affected side, and the result was compared to the outcome of our proposed SSM-driven method. The accuracy of the reconstruction was determined by calculating the distances to the corresponding parts on the intact skull.

Results

While unilateral defects could be reconstructed with both methods, the reconstruction of bilateral defects was, for obvious reasons, only possible employing the SSM-based method. Comparing all groups, the analysis shows a significantly higher precision of the SSM group, with a mean error of 0.47 mm compared to the mirroring group which exhibited a mean error of 1.13 mm. Reconstructions of bilateral defects yielded only slightly higher estimation errors than those of unilateral defects.

Conclusion

The presented computer-based approach using SSM is a precise and simple tool in the field of computer-assisted surgery. It helps to reconstruct large-size defects of the skull considering the natural asymmetry of the cranium and is not limited to unilateral defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Marsell R, Einhorn TA (2011) The biology of fracture healing. Injury 42(6):551–555

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ehrenfeld M, Manson PN, Prein J (2012) Principles of internal fixation of the craniomaxillofacial skeleton. AO Foundation, Thieme, Stuttgart

    Book  Google Scholar 

  3. Unterhofer C, Wipplinger C, Verius M, Recheis W, Thome C, Ortler M (2017) Reconstruction of large cranial defects with poly-methyl-methacrylate (PMMA) using a rapid prototyping model and a new technique for intraoperative implant modeling. Neurologia i neurochirurgia polska 51(3):214–220

    Article  PubMed  Google Scholar 

  4. Toro C, Robiony M, Costa F, Zerman N, Politi M (2007) Feasibility of preoperative planning using anatomical facsimile models for mandibular reconstruction. Head Face Med 3(1):5

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wagner MEH, Lichtenstein JT, Winkelmann M, H-o Shin, Gellrich N-C, Essig H (2015) Development and first clinical application of automated virtual reconstruction of unilateral midface defects. J Cranio-Maxillofac Surg 43(8):1340–1347

    Article  Google Scholar 

  6. Wilde F, Hanken H, Probst F, Schramm A, Heiland M, Cornelius CP (2015) Multicenter study on the use of patient-specific CAD/CAM reconstruction plates for mandibular reconstruction. Int J Comput Assist Radiol Surg 10(12):2035–2051

    Article  PubMed  Google Scholar 

  7. Schramm A, Suarez-Cunqueiro MM, Rücker M, Kokemueller H, Bormann KH, Metzger MC, Gellrich NC (2009) Computer-assisted therapy in orbital and mid-facial reconstructions. Int J Med Robot Comput Assist Surg: MRCAS 5(2):111–124

    Article  CAS  Google Scholar 

  8. Schramm A, Wilde F (2011) Computer-assisted reconstruction of the facial skeleton. HNO 59(8):800–806

    Article  CAS  PubMed  Google Scholar 

  9. Gui H, Yang H, Zhang S, Shen SG, Ye M, Schmelzeisen R (2015) Mirroring tool: The simplest computer-aided simulation technology? J Craniofac Surg 26(7):2115–2119

    Article  PubMed  Google Scholar 

  10. Egger J, Gall M, Tax A, Ucal M, Zefferer U, Li X, von Campe G, Schafer U, Schmalstieg D, Chen X (2017) Interactive reconstructions of cranial 3D implants under MeVisLab as an alternative to commercial planning software. PLoS One 12(3):e0172694

    Article  PubMed  PubMed Central  Google Scholar 

  11. Guevara-Rojas G, Figl M, Schicho K, Seemann R, Traxler H, Vacariu A, Carbon C-C, Ewers R, Watzinger F (2014) Patient-specific polyetheretherketone facial implants in a computer-aided planning workflow. J Oral Maxillofac Surg 72(9):1801–1812

    Article  PubMed  Google Scholar 

  12. Lamecker H (2008) Variational and statistical shape modeling for 3D geometry reconstruction. Freie Universität Berlin, Berlin

    Google Scholar 

  13. Tarsitano A, Ciocca L, Cipriani R, Scotti R, Marchetti C (2015) Mandibular reconstruction using fibula free flap harvested using a customised cutting guide: how we do it. Acta Otorhinolaryngol Italica 35(3):198

    CAS  Google Scholar 

  14. Wilde F, Schramm A (2016) Computer-aided reconstruction of the facial skeleton: planning and implementation in clinical routine. HNO 64(9):641–649

    Article  CAS  PubMed  Google Scholar 

  15. Scolozzi P, Terzic A (2011) Mirroring computational planning, navigation guidance system, and intraoperative mobile C-arm cone-beam computed tomography with flat-panel detector: A new rationale in primary and secondary treatment of midfacial fractures? J Oral Maxillofac Surg 69(6):1697–1707

    Article  PubMed  Google Scholar 

  16. Wien W (2012) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  17. Heiland M, Habermann CR, Schmelzle R (2004) Indications and limitations of intraoperative navigation in maxillofacial surgery. J Oral Maxillofac Surg 62(9):1059–1063

    Article  PubMed  Google Scholar 

  18. Zachow S (2015) Computational planning in facial surgery. Fac Plast Surg 31(05):446–462

    Article  CAS  Google Scholar 

  19. Marreiros FM, Heuzé Y, Verius M, Unterhofer C, Freysinger W, Recheis W (2016) Custom implant design for large cranial defects. Int J Comput Assist Radiol Surg 11(12):2217–2230

    Article  PubMed  Google Scholar 

  20. Fisher M, Medina M, Bojovic B, Ahn E, Dorafshar AH (2016) Indications for computer-aided design and manufacturing in congenital craniofacial reconstruction. Craniomaxillofac Trauma Reconstr 9(03):235–241

    Article  PubMed  PubMed Central  Google Scholar 

  21. Carr JC, Fright WR, Beatson RK (1997) Surface interpolation with radial basis functions for medical imaging. IEEE Trans Med Imag 16(1):96–107

    Article  CAS  Google Scholar 

  22. Zhao L, Patel PK, Cohen M (2012) Application of virtual surgical planning with computer assisted design and manufacturing technology to cranio-maxillofacial surgery. Arch Plast Surg 39(4):309–316

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wu T, Engelhardt M, Fieten L, Popovic A, Radermacher K (2006) Anatomically constrained deformation for design of cranial implant: methodology and validation. In: Medical image computing and computer-assisted intervention–MICCAI 2006, pp 9–16

  24. Liao Y-L, Lu C-F, Wu C-T, Lee J-D, Lee S-T, Sun Y-N, Wu Y-T (2013) Using three-dimensional multigrid-based snake and multiresolution image registration for reconstruction of cranial defect. Med Biol Eng Comput 51(1):89–101

    Article  PubMed  Google Scholar 

  25. Zachow S, Kubiack K, Malinowski J, Lamecker H, Essig H, Gellrich N (2010) Modellgestützte chirurgische Rekonstruktion komplexer Mittelgesichtsfrakturen. In: Proceedings of the BMT biomed tech, Rostock, 2010. vol (Suppl. 01), pp 107–108

  26. Rybak J, Kuss A, Lamecker H, Zachow S, Hege HC, Lienhard M, Singer J, Neubert K, Menzel R (2010) The digital bee brain: integrating and managing neurons in a common 3D reference system. Front Syst Neurosci 4:30

    PubMed  PubMed Central  Google Scholar 

  27. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin J-C, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, Buatti J, Aylward S, Miller JV, Pieper S, Kikinis R (2012) 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imag 30(9):1323–1341

    Article  Google Scholar 

  28. Avants BB, Tustison N, Song G (2009) Advanced normalization tools (ANTS). Insight J 2:1–35

    Google Scholar 

  29. Luthi M, Albrecht T, Vetter T (2009) Building shape models from lousy data. Med Image Comput Comput Assist Interv 12(Pt 2):1–8

    PubMed  Google Scholar 

  30. Goodall C (1991) Procrustes methods in the statistical analysis of shape. J R Stat Soc Ser B (Methodological) 5(2):285–339

    Google Scholar 

  31. Schlager S (2015) RvtkStatismo: Integrating statismo and R using the vtkStandardMeshRepresenter. https://github.com/zarquon42b/RvtkStatismo. Accessed 2015

  32. Lüthi M, Blanc R, Albrecht T, Gass T, Goksel O, Büchler P, Kistler M, Bousleiman H, Reyes M, Cattin P (2012) Statismo-a framework for PCA based statistical models. Insight J 1:1–18

    Google Scholar 

  33. Moshfeghi M, Ranganath S, Nawyn K (1994) Three-dimensional elastic matching of volumes. IEEE Trans Image Process 3(2):128–138

    Article  CAS  PubMed  Google Scholar 

  34. Gunz P, Mitteroecker P, Bookstein FL (2005) Semilandmarks in three dimensions. In: Slice DE (ed) Modern morphometrics in physical anthropology. Developments in primatology: progress and prospects. Kluwer Academic/Plenum Publishers, Chicago, pp 73–98

    Chapter  Google Scholar 

  35. Bookstein FL (1997) Landmark methods for forms without landmarks: morphometrics of group differences in outline shape. Med Image Anal 1(3):225–243

    Article  CAS  PubMed  Google Scholar 

  36. Meyer M, Barr A, Lee H, Desbrun M (2002) Generalized barycentric coordinates on irregular polygons. J Gr Tools 7(1):13–22

    Article  Google Scholar 

  37. Metzger MC, Hohlweg-Majert B, Schön R, Teschner M, Gellrich N-C, Schmelzeisen R, Gutwald R (2007) Verification of clinical precision after computer-aided reconstruction in craniomaxillofacial surgery. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol 104(4):e1–e10

    Article  Google Scholar 

  38. Wilde F, Cornelius CP, Schramm A (2014) Computer-assisted mandibular reconstruction using a patient-specific reconstruction plate fabricated with computer-aided design and manufacturing techniques. Craniomaxillofac Trauma Reconstr 7(2):158–166

    Article  PubMed  PubMed Central  Google Scholar 

  39. Brief J, Hassfeld S, Däuber S, Pernozzoli A, Münchenberg J, Redlich T, Walz M, Krempien R, Weisser H, Poeckler C (2000) 3D norm data: the first step towards semiautomatic virtual craniofacial surgery. Computer aided surgery 5(5):353–358

    Article  CAS  PubMed  Google Scholar 

  40. Dean D, Min K-J, Bond A (2003) Computer aided design of large-format prefabricated cranial plates. J Craniofac Surg 14(6):819–832

    Article  PubMed  Google Scholar 

  41. Semper-Hogg W, Fuessinger MA, Schwarz S, Ellis E, Cornelius C-P, Probst F, Metzger MC, Schlager S (2016) Virtual reconstruction of midface defects using statistical shape models. J Cranio-Maxillo-Fac Surg 45(4):461–466

    Article  Google Scholar 

  42. Schmelzeisen R, Gellrich NC, Schoen R, Gutwald R, Zizelmann C, Schramm A (2004) Navigation-aided reconstruction of medial orbital wall and floor contour in cranio-maxillofacial reconstruction. Injury 35(10):955–962

    Article  PubMed  Google Scholar 

  43. Kwon T-G, Park H-S, Ryoo H-M, Lee S-H (2006) A comparison of craniofacial morphology in patients with and without facial asymmetry–a three-dimensional analysis with computed tomography. Int J Oral Maxillofac Surg 35(1):43–48

    Article  PubMed  Google Scholar 

  44. Metzger M, Bittermann G, Dannenberg L, Schmelzeisen R, Gellrich N-C, Hohlweg-Majert B, Scheifele C (2013) Design and development of a virtual anatomic atlas of the human skull for automatic segmentation in computer-assisted surgery, preoperative planning, and navigation. Int J Comput Assist Radiol Surg 8(5):691–702

    Article  CAS  PubMed  Google Scholar 

  45. Besson A, Leger J, Doual A (2000) A study of craniofacial asymmetry using computed tomography. Bulletin du Groupement international pour la recherche scientifique en stomatologie & odontologie 43(2):68–73

    Google Scholar 

  46. Katsumata A, Fujishita M, Maeda M, Ariji Y, Ariji E, Langlais RP (2005) 3D-CT evaluation of facial asymmetry. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol 99(2):212–220

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Anton Fuessinger.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuessinger, M.A., Schwarz, S., Cornelius, CP. et al. Planning of skull reconstruction based on a statistical shape model combined with geometric morphometrics. Int J CARS 13, 519–529 (2018). https://doi.org/10.1007/s11548-017-1674-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-017-1674-6

Keywords

Navigation