Skip to main content

Advertisement

Log in

An X-ray-free method to accurately identify the elbow flexion–extension axis for the placement of a hinged external fixator

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Identifying the elbow flexion–extension (F–E) movement axis is important for placing a hinged elbow external fixator. An X-ray fluoroscopy-based method is widely used in clinical practice, exposing the patient and surgeons to high doses of radiation. Additionally, the accuracy and repeatability of the fluoroscopy-based method are very low and affected by subjective factors.

Methods

To solve this problem, an X-ray-free method based on kinematics analysis was proposed to identify the elbow F–E movement axis, and a navigation system was built to guide the placement of the elbow external fixator.

Results

Our X-ray-free navigation method is more repeatable than the current X-ray fluoroscopy method used clinically. Both our algorithm and the NIST (National Institute of Standards and Technology) algorithm showed high accuracy and repeatability to identify the axis.

Conclusions

The method proposed in this study is very promising to avoid a large dose of X-ray radiation and increases the repeatability and performance of identifying the elbow F–E movement axis for the placement of the hinged elbow external fixator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

F–E:

Flexion–extension

\(\hbox {X}_W \hbox {Y}_W \hbox {Z}_W \) :

Coordinate system of the positioning system

\(\hbox {X}_H \hbox {Y}_H \hbox {Z}_H \) :

Coordinate system of the humerus tracker

\(T_{H\rightarrow W} \) :

Space transformation from \(\hbox {X}_H \hbox {Y}_H \hbox {Z}_H \) to \(\hbox {X}_W \hbox {Y}_W \hbox {Z}_W \)

\(P_W \) :

Point set of the position of the ulna tracker in reference to \(\hbox {X}_W \hbox {Y}_W \hbox {Z}_W \)

\(P_H \) :

Point set of the position of the ulna tracker in reference to \(\hbox {X}_H \hbox {Y}_H \hbox {Z}_H \)

\(P_{Hi} \) :

The \(i\hbox {th}\) point of dataset \(P_H \)

\({P_{H}}^{\prime }\) :

Point set of the projection of \(P_H \) to plane \(\beta \)

\({P_{Hi}}^{\prime }=[{P_{Hi}^x }~{P_{Hi}^y }~{P_{Hi}^z }{]}\) :

The \(i\hbox {th}\) point of dataset \(P_H ^{{\prime }}\)

\({{{\varvec{n}}}}_r \) :

Orientation vector of the elbow flexion–extension axis

\(\beta \) :

The plane on which \(P_H ^{{\prime }}\) distributes

PC1:

The first principal component of \(P_H \)

PC2:

The second principal component of \(P_H \)

PC3:

The third principal component of \(P_H \)

\(E[\cdot {]}\) :

Mathematical expectation

\(\mathrm{Cov} \left( \cdot \right) \) :

Covariance matrix

\({\varvec{\alpha }} _\mathrm{min} \) :

The eigenvector of the \(\mathrm{Cov}\left( {P_H } \right) \) smallest eigenvalue

\(P_m =[{P_m^x }~ {P_m^y }~ {P_m^z }{]}\) :

The centroid of \(P_H \)

\(P_a =[{P_a^x }~ {P_a^y }~{P_a^z }{]}\) :

The position (centre) of the elbow F–E axis

N :

The number of points of dataset \(P_H \)

S :

The degree of the simulated arc circle

\({\upsigma }\) :

The standard deviation of the noise added to the simulated arc circle

\(P_\mathrm{E} \) :

The enter-point of the axis pin in the model test

\(P_\mathrm{O} \) :

The outpoint of the axis pin in the model test

\(l^{r}\) :

The real axis of the simulated F–E movement

\(l_j\,\left( {j=1,2,\ldots ,5} \right) \) :

The calculated axis of the \(j\hbox {th}\) F–E movement of the elbow model or specimen

\(l^{m}\) :

The mean optimal axis of the five F–E movements of the elbow model or specimen

\(C_j\,\left( {j=1,2,\ldots ,5} \right) \) :

The calculated position (centre) of the \(j\hbox {th}\) elbow model or specimen movement

\(E_\mathrm{sa}\) :

The axis angle errors of the simulated kinematics data

\(E_\mathrm{st}\) :

The axis position (centre) errors of the simulated kinematics data

\(\mathrm{Ang} (A,B)\) :

The angle between line A and line B

Dist (AP):

The distance from point P to line A or Circle A

\(E_\mathrm{t} \) :

The mean axis position (rotation centre) error in the model or specimen experiment

\(E_\mathrm{a} \) :

The mean axis orientation error in the model or specimen experiment

\(E_\mathrm{r} \) :

The distance from the kinematics data \(P_H \) to the circle fitted in the model or specimen experiment

n :

The sample size of the statistical comparison

T :

T is the duration of placing the axis pin under navigation

T1:

The time of acquiring kinematics data

T2:

The duration of placing the axis pin under navigation

A1:

Our algorithm

A2:

NIST algorithm

ROM1:

Range of specimen F–E movement after fixator placement

ROM2:

The maximal range of motion of the elbow after external fixator placement

NIST:

National Institute of Standards and Technology

References

  1. Reichel LM, Morales OA (2013) Gross anatomy of the elbow capsule: a cadaveric study. J Hand Surg 38(1):110–116

    Article  Google Scholar 

  2. Maniscalco P, Pizzoli AL, Brivio LR, Caforio M (2014) Hinged external fixation for complex fracture-dislocation of the elbow in elderly people. Injury 45:S53–S57

    Article  PubMed  Google Scholar 

  3. Kulkarni GS, Kulkarni VS, Shyam AK, Kulkarni RM, Kulkarni MG, Nayak P (2010) Management of severe extra-articular contracture of the elbow by open arthrolysis and a monolateral hinged external fixator. Bone Jt J 92(1):92–97

    Article  CAS  Google Scholar 

  4. Ruan H-J, Liu S, Fan C-Y, Liu J-J (2013) Open arthrolysis and hinged external fixation for posttraumatic ankylosed elbows. Arch Orthop Trauma Surg 133(2):179–185

    Article  PubMed  Google Scholar 

  5. Anakwe RE, Middleton SD, Jenkins PJ, McQueen MM (2011) Patient-reported outcomes after simple dislocation of the elbow. J Bone Joint Surg Am 93(13):1220–1226

    Article  PubMed  Google Scholar 

  6. Deland JT, Garg A, Walker PS (1987) Biomechanical basis for elbow hinge-distractor design. Clin Orthop Relat Res 215:303–312

    Google Scholar 

  7. London JT (1981) Kinematics of the elbow. J Bone Joint Surg Am 63(4):529–535

    Article  CAS  PubMed  Google Scholar 

  8. Ouyang Y, Liao Y, Liu Z, Fan C (2013) Hinged external fixator and open surgery for severe elbow stiffness with distal humeral nonunion. Orthopedics 36(2):e186–e192

    Article  PubMed  Google Scholar 

  9. Iordens GIT, Den Hartog D, Van Lieshout EMM, Tuinebreijer WE, De Haan J, Patka P, Verhofstad MHJ, Schep NWL, Collaborative DE (2015) Good functional recovery of complex elbow dislocations treated with hinged external fixation: a multicenter prospective study. Clin Orthop Relat Res ® 473(4):1451–1461

    Article  Google Scholar 

  10. Tan V, Daluiski A, Capo J, Hotchkiss R (2005) Hinged elbow external fixators: indications and uses. J Am Acad Orthop Surg 13(8):503–514

    Article  PubMed  Google Scholar 

  11. Ring D, Bruinsma WE, Jupiter JB (2014) Complications of hinged external fixation compared with cross-pinning of the elbow for acute and subacute instability. Clin Orthop Relat Res ® 472(7):2044–2048

    Article  Google Scholar 

  12. Cheung EV, O’Driscoll SW, Morrey BF (2008) Complications of hinged external fixators of the elbow. J Shoulder Elb Surg 17(3):447–453

    Article  Google Scholar 

  13. Madey SM, Bottlang M, Steyers CM, Marsh JL, Brown TD (2000) Hinged external fixation of the elbow: optimal axis alignment to minimize motion resistance. J Orthop Trauma 14(1):41–47

    Article  CAS  PubMed  Google Scholar 

  14. Ericson A, Arndt A, Stark A, Wretenberg P, Lundberg A (2003) Variation in the position and orientation of the elbow flexion axis. J Bone Joint Surg Br 85(4):538–544

    Article  CAS  PubMed  Google Scholar 

  15. Wiggers JK, Streekstra GJ, Kloen P, Mader K, Goslings JC, Schep NWL (2014) Surgical accuracy in identifying the elbow rotation axis on fluoroscopic images. J Hand Surg 39(6):1141–1145

    Article  CAS  Google Scholar 

  16. Egidy CC, Fufa D, Kendoff D, Daluiski A (2012) Hinged external fixator placement at the elbow: navigated versus conventional technique. Compu Aided Surg 17(6):294–299

    Article  CAS  Google Scholar 

  17. Bigazzi P, Biondi M, Corvi A, Pfanner S, Checcucci G, Ceruso M (2015) A new autocentering hinged external fixator of the elbow: a device that stabilizes the elbow axis without use of the articular pin. J Shoulder Elbow Surg 24(8):1197–1205

    Article  PubMed  Google Scholar 

  18. Shakarji CM (1998) Least-squares fitting algorithms of the NIST algorithm testing system. J Res Natl Inst Stand Technol 103:633–641

    Article  PubMed  PubMed Central  Google Scholar 

  19. Piazza SJ, Okita N, Cavanagh PR (2001) Accuracy of the functional method of hip joint center location: effects of limited motion and varied implementation. J Biomech 34(7):967–973

    Article  CAS  PubMed  Google Scholar 

  20. Gamage SSHU, Lasenby J (2002) New least squares solutions for estimating the average centre of rotation and the axis of rotation. J Biomech 35(1):87–93

    Article  PubMed  Google Scholar 

  21. Halvorsen K (2003) Bias compensated least squares estimate of the center of rotation. J Biomech 36(7):999–1008

    Article  PubMed  Google Scholar 

  22. Halvorsen K, Lesser M, Lundberg A (1999) A new method for estimating the axis of rotation and the center of rotation. J Biomech 32(11):1221–1227

    Article  CAS  PubMed  Google Scholar 

  23. Piazza SJ, Erdemir A, Okita N, Cavanagh PR (2004) Assessment of the functional method of hip joint center location subject to reduced range of hip motion. J Biomech 37(3):349–356

    Article  PubMed  Google Scholar 

  24. Woltring HJ, Huiskes R, De Lange A, Veldpaus FE (1985) Finite centroid and helical axis estimation from noisy landmark measurements in the study of human joint kinematics. J Biomech 18(5):379–389

    Article  CAS  PubMed  Google Scholar 

  25. Marin F, Mannel H, Claes L, Dürselen L (2003) Accurate determination of a joint rotation center based on the minimal amplitude point method. Comput Aided Surg 8(1):30–34

    Article  PubMed  Google Scholar 

  26. De Momi E, Lopomo N, Cerveri P, Zaffagnini S, Safran MR, Ferrigno G (2009) In-vitro experimental assessment of a new robust algorithm for hip joint centre estimation. J Biomech 42(8):989–995

    Article  PubMed  Google Scholar 

  27. Ehrig RM, Taylor WR, Duda GN, Heller MO (2007) A survey of formal methods for determining functional joint axes. J Biomech 40(10):2150–2157

    Article  PubMed  Google Scholar 

  28. Schwartz MH, Rozumalski A (2005) A new method for estimating joint parameters from motion data. J Biomech 38(1):107–116

    Article  PubMed  Google Scholar 

  29. Kainz H, Carty CP, Modenese L, Boyd RN, Lloyd DG (2015) Estimation of the hip joint centre in human motion analysis: a systematic review. Clin Biomech 30(4):319–329

    Article  Google Scholar 

  30. Veeger HEJ, Yu B (1996) Orientation of axes in the elbow and forearm for biomechanical modelling. In: Proceedings of the 1996 Fifteenth Southern, 1996. IEEE, pp 377–380

  31. Stokdijk M, Meskers CGM, Veeger HEJ, De Boer YA, Rozing PM (1999) Determination of the optimal elbow axis for evaluation of placement of prostheses. Clin Biomech 14(3):177–184

    Article  CAS  Google Scholar 

  32. Woltring HJ, Cappozzo A, Berme P (1990) Data processing and error analysis. In: Biomechanics of human movement, chap 10, pp 203–237

  33. Woltring HJ (1991) Definition and calculus of attitude angles, instantaneous helical axes and instantaneous centres of rotation from noisy position and attitude data. In: 1991

  34. Berme N, Cappozzo A (1990) Biomechanics of human movement: applications in rehabilitation, sports and ergonomics. Bertec

  35. Song J, Ding H, Han W, Wang J, Wang G (2016) A motion compensation method for bi-plane robot-assisted internal fixation surgery of a femur neck fracture. Proceed Inst Mech Eng Part H J Eng Med 230(10):942–948

    Article  Google Scholar 

  36. Shlens J (2014) A tutorial on principal component analysis. arXiv preprint arXiv:1404.1100v1

  37. Bro R, Smilde AK (2014) Principal component analysis. Anal Methods 6(9):2812–2831

    Article  CAS  Google Scholar 

  38. Wiles AD, Thompson DG, Frantz DD (2004) Accuracy assessment and interpretation for optical tracking systems. In: 2004. International Society for Optics and Photonics, pp 421–432

  39. Stokdijk M, Biegstraaten M, Ormel W, de Boer YA, Veeger HEJ, Rozing PM (2000) Determining the optimal flexion-extension axis of the elbow in vivo–a study of interobserver and intraobserver reliability. J Biomech 33(9):1139–1145

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the China Major R and D Plan (No. 2016YFC0105800) and National Natural Science Foundation of China (61361160417, 81271735).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangzhi Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical standard

All experiments were approved by the Institutional Review Board of the hospital.

Informed consent

Informed consent was not needed.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (txt 1 KB)

Supplementary material 2 (txt 8 KB)

Supplementary material 3 (txt 7 KB)

Supplementary material 4 (txt 7 KB)

Supplementary material 5 (txt 7 KB)

Supplementary material 6 (txt 7 KB)

Supplementary material 7 (txt 6 KB)

Supplementary material 8 (txt 6 KB)

Supplementary material 9 (txt 6 KB)

Supplementary material 10 (txt 6 KB)

Supplementary material 11 (txt 6 KB)

Supplementary material 12 (txt 9 KB)

Supplementary material 13 (txt 9 KB)

Supplementary material 14 (txt 9 KB)

Supplementary material 15 (txt 9 KB)

Supplementary material 16 (txt 9 KB)

Supplementary material 17 (txt 7 KB)

Supplementary material 18 (txt 7 KB)

Supplementary material 19 (txt 7 KB)

Supplementary material 20 (txt 7 KB)

Supplementary material 21 (txt 7 KB)

Supplementary material 22 (txt 9 KB)

Supplementary material 23 (txt 8 KB)

Supplementary material 24 (txt 8 KB)

Supplementary material 25 (txt 8 KB)

Supplementary material 26 (txt 8 KB)

Supplementary material 27 (txt 6 KB)

Supplementary material 28 (txt 6 KB)

Supplementary material 29 (txt 6 KB)

Supplementary material 30 (txt 6 KB)

Supplementary material 31 (txt 6 KB)

Supplementary material 32 (txt 24 KB)

Supplementary material 33 (txt 19 KB)

Supplementary material 34 (txt 21 KB)

Supplementary material 35 (txt 22 KB)

Supplementary material 36 (txt 22 KB)

Supplementary material 37 (txt 9 KB)

Supplementary material 38 (txt 10 KB)

Supplementary material 39 (txt 11 KB)

Supplementary material 40 (txt 11 KB)

Supplementary material 41 (txt 12 KB)

Supplementary material 42 (txt 11 KB)

Supplementary material 43 (txt 11 KB)

Supplementary material 44 (txt 13 KB)

Supplementary material 45 (txt 12 KB)

Supplementary material 46 (txt 13 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, J., Ding, H., Han, W. et al. An X-ray-free method to accurately identify the elbow flexion–extension axis for the placement of a hinged external fixator. Int J CARS 13, 375–387 (2018). https://doi.org/10.1007/s11548-017-1680-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-017-1680-8

Keywords

Navigation