Skip to main content

Advertisement

Log in

Computational modeling of abdominal hernia laparoscopic repair with a surgical mesh

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Although new techniques and prostheses have been introduced in ventral hernia surgery, abdominal hernia repair still presents complications, such as recurrence, pain, and discomfort. Thus, this work implements a computational method aimed at evaluating biomechanical aspects of the abdominal hernia laparoscopic repair, which can support clinical research tailored to hernia surgery.

Methods

A virtual solid model of the abdominal wall is obtained from MRI scans of a healthy subject. The mechanical behavior of muscular and fascial tissues is described by constitutive formulations with specific parameters. A defect is introduced to reproduce an incisional hernia. Laparoscopic repair is mimicked via intraperitoneal positioning of a surgical mesh. Numerical analyses are performed to evaluate the mechanical response of the abdominal wall in healthy, herniated and post-surgery configurations, considering physiological intra-abdominal pressures.

Results

During the deformation of the abdominal wall at increasing pressures, a percentage displacement increment up to 6% is found in the herniated condition, while the mechanical behavior of the repaired abdomen is similar to the healthy one. In the pressure range between 8 mmHg and 55 mmHg, the herniated abdomen shows an incremental stiffness differing of 7% with respect to the healthy condition, while the post-surgery condition shows an increase of the incremental stiffness up to 58%.

Conclusions

This computational approach may be exploited to investigate different aspects of abdominal wall surgical repair, including mesh mechanical characteristics and positioning. Numerical modeling offers a helpful support for selecting the best-fitting prosthesis for customize pre-surgery planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. DeFrances CJ, Cullen KA, Kozak LJ (2007) National Hospital Discharge Survey: 2005 annual summary with detailed diagnosis and procedure data. Vital Health Stat 13:1–209

    Google Scholar 

  2. Cassar K, Munro A (2002) Surgical treatment of incisional hernia. Br J Surg 89:534–545

    Article  CAS  PubMed  Google Scholar 

  3. Mudge M, Hughes LE (1985) Incisional hernia: a 10 year prospective study of incidence and attitudes. Br J Surg 72:70–71

    Article  CAS  PubMed  Google Scholar 

  4. Bucknall TE, Cox PJ, Ellis H (1982) Burst abdomen and incisional hernia: a prospective study of 1129 major laparotomies. Br Med J 284:931–933

    Article  CAS  Google Scholar 

  5. Heniford BT, Park A, Ramshaw BJ, Voeller G (2003) Laparoscopic repair of ventral hernias, nine years’ experience with 850 consecutive hernias. Ann Surg 238:391–400

    PubMed  PubMed Central  Google Scholar 

  6. Colavita PD, Tsirline VB, Walters AL, Lincourt AE, Belyansky I, Heniford BT (2013) Laparoscopic versus open hernia repair: outcomes and sociodemographic utilization results from the nationwide inpatient sample. Surg Endosc 27:109–117

    Article  PubMed  Google Scholar 

  7. Gopal SV, Warrier A (2013) Recurrence after groin hernia repair-revisited. Int J Surg 11:374–377

    Article  PubMed  Google Scholar 

  8. Cobb WS, Harris JB, Lokey JS, McGill ES, Klove KL (2003) Incisional herniorrhaphy with intraperitoneal composite mesh: a report of 95 cases. Am Surg 69:784–787

    PubMed  Google Scholar 

  9. Bilsel Y, Abci I (2012) The search for ideal hernia repair; mesh materials and types. Int J Surg 10:317–321

    Article  PubMed  Google Scholar 

  10. Todros S, Pavan PG, Pachera P, Natali AN (2015) Synthetic surgical meshes used in abdominal wall surgery: part II-biomechanical aspects. J Biomed Mater Res B Appl Biomater. https://doi.org/10.1002/jbm.b.33584

    Google Scholar 

  11. Canchi T, Kumar SD, Ng EY, Narayanan S (2015) A review of computational methods to predict the risk of rupture of abdominal aortic aneurysms. Biomed Res Int. https://doi.org/10.1155/2015/861627

    PubMed  PubMed Central  Google Scholar 

  12. Doyle BJ, Callanan A, McGloughlin TM (2007) A comparison of modelling techniques for computing wall stress in abdominal aortic aneurysms. Biomed Eng OnLine 6:38

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pavan PG, Pachera P, Todros S, Tiengo C, Natali AN (2016) Mechanical characterization of animal derived grafts for surgical implantation. J Mech Med Biol 16:1650023

    Article  Google Scholar 

  14. Hernández-Gascón B, Peña E, Grasa J, Pascual G, Bellón JM, Calvo B (2013) Mechanical response of the herniated human abdomen to the placement of different prostheses. J Biomech Eng 135:51004

    Article  PubMed  Google Scholar 

  15. Junge K, Klinge U, Prescher A, Giboni P, Niewiera M, Schumpelick V (2001) Elasticity of the anterior abdominal wall and impact for reparation of incisional hernias using mesh implants. Hernia 5:113–118

    Article  CAS  PubMed  Google Scholar 

  16. Hernández-Gascón B, Peña E, Melero H, Pascual G, Doblarè M, Ginebra MP, Bellón JM, Calvo B (2011) Mechanical behaviour of synthetic surgical meshes: Finite element simulation of the herniated abdominal wall. Acta Biomater 7:3905–3913

    Article  PubMed  Google Scholar 

  17. Muller M, Klinge U, Conze J, Schumpelick V (1998) Abdominal wall compliance after Marlex\(^{\textregistered }\) mesh implantation for incisional hernia repair. Hernia 2:113–117

    Article  Google Scholar 

  18. Hernández-Gascón B, Peña E, Pascual G, Rodríguez M, Bellón JM, Calvo B (2012) Long-term anisotropic mechanical response of surgical meshes used to repair abdominal wall defects. J Mech Behav Biomed Mater 5:257–271

    Article  PubMed  Google Scholar 

  19. Pachera P, Pavan PG, Todros S, Cavinato C, Fontanella CG, Natali AN (2016) A numerical investigation of the healthy abdominal wall structures. J Biomech 49:1818–1823

    Article  CAS  PubMed  Google Scholar 

  20. Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31:1116–1128

    Article  PubMed  Google Scholar 

  21. Wildberger JE, Mahnken AH, Flohr T, Raupach R, Weiss C, Günther RW, Schaller S (2003) Spatial domain image filtering in computed tomography: feasibility study in pulmonary embolism. Eur Radiol 13:717–723

    PubMed  Google Scholar 

  22. Hernández-Gascón B (2013) Mechanical modelling of the abdominal wall and biomaterials for hernia surgery. Dissertation, University of Zaragoza. https://zaguan.unizar.es/record/10400/files/TESIS-2013-042.pdf. Accessed 21 Mar 2017

  23. Ahluwalia HS, Burger JP, Quinn TH (2004) Anatomy of the anterior abdominal wall. Oper Tech Gen Surg 6:147–155

    Article  Google Scholar 

  24. Urquhart DM, Barker PJ, Hodges PW, Story IH, Briggs CA (2005) Regional morphology of the transversus abdominis and obliquus internus and externus abdominis muscles. Clin Biomech 20:233–241

    Article  Google Scholar 

  25. Natali AN, Carniel EL, Gregersen H (2009) Biomechanical behaviour of oesophageal tissues: material and structural configuration, experimental data and constitutive analysis. Med Eng Phys 31:1056–1062

    Article  PubMed  Google Scholar 

  26. Natali AN, Carniel EL, Pavan PG, Dario P, Izzo I (2006) Hyperelastic models for the analysis of soft tissue mechanics: Definition of constitutive parameters. In: Proceedings of the first IEEE/RAS-EMBS international conference on biomedical robotics and biomechatronics, BioRob, pp 188–191

  27. Guérin G, Turquier F (2013) Impact of the defect size, the mesh overlap and the fixation depth on ventral hernia repairs: a combined experimental and numerical approach. Hernia 17:647–55

    Article  PubMed  Google Scholar 

  28. Natali AN, Pavan PG, Stecco C (2010) A constitutive model for the mechanical characterization of the plantar fascia. Connect Tissue Res 51:337–346

    Article  PubMed  Google Scholar 

  29. Corana A, Marchesi M, Martini C, Ridella S (1987) Minimizing multimodal functions of continuous variables with the simulated annealing algorithm. ACM Trans Math Softw 13:262–280

    Article  Google Scholar 

  30. Förstemann T, Trzewik J, Holste J, Batke B, Konerding MA, Wolloscheck T, Hartung C (2011) Forces and deformations of the abdominal wall—a mechanical and geometrical approach to the linea alba. J Biomech 44:600–606

    Article  PubMed  Google Scholar 

  31. Ben Abdelounis H, Nicolle S, Otténio M, Beillas P, Mitton D (2013) Effect of two loading rates on the elasticity of the human anterior rectus sheath. J Mech Behav Biomed Mater 20:1–5

    Article  CAS  PubMed  Google Scholar 

  32. Cardoso MHS (2012) Experimental study of the human abdominal wall. Dissertation, University of Porto. https://repositorio-aberto.up.pt/bitstream/10216/65576/1/000154315.pdf. Accessed 21 Mar 2017

  33. Cobb WS, Burns JM, Kercher KW, Matthews BD, Norton HJ, Heniford BT (2005) Normal intraabdominal pressure in healthy adults. J Surg Res 129:231–235

    Article  PubMed  Google Scholar 

  34. Klinge U, Klosterhalfen B, Conze J, Limberg W, Obolenski B, Öttinger AP, Schumpelick V (1998) Modified mesh for hernia repair that is adapted to the physiology of the abdominal wall. Eur J Surg 164:951–960

    Article  CAS  PubMed  Google Scholar 

  35. Konerding MA, Bohn M, Wolloscheck T, Batk B, Holste JL, Wohlert S, Trzewik J, Förstemann T, Hartung C (2011) Maximum forces acting on the abdominal wall: experimental validation of a theoretical modeling in a human cadaver study. Med Eng Phys 33:789–792

    Article  PubMed  Google Scholar 

  36. Song C, Alijani A, Frank T, Hanna GB, Cuschieri A (2006) Mechanical properties of the human abdominal wall measured in vivo during insufflation for laparoscopic surgery. Surg Endosc 20:987–990

    Article  CAS  PubMed  Google Scholar 

  37. Qandeel H, O’Dwyer PJ (2016) Relationship between ventral hernia defect area and intra-abdominal pressure: dynamic in vivo measurement. Surg Endosc 30:1480–1484

    Article  PubMed  Google Scholar 

  38. Welty G, Klinge U, Klosterhalfen B, Kasperk R, Schumpelick V (2001) Functional impairment and complaints following incisional hernia repair with different polypropylene meshes. Hernia 5:142–147

    Article  CAS  PubMed  Google Scholar 

  39. Bringman S, Conze J, Cuccurullo D, Deprest J, Junge K, Klosterhalfen B, Parra-Davila E, Ramshaw B, Schumpelick V (2010) Hernia repair: the search for ideal meshes. Hernia 14:81–87

    Article  CAS  PubMed  Google Scholar 

  40. Todros S, Pavan PG, Natali AN (2017) Synthetic surgical meshes used in abdominal wall surgery: part I—materials and structural conformation. J Biomed Mater Res B Appl Biomater 105:689–699

    Article  CAS  PubMed  Google Scholar 

  41. Lambertz A, Stüben BO, Bock B, Eickhoff R, Kroh A, Klink CD, Neumann UP, Kronesb CJ (2017) Port-site incisional hernia—a case series of 54 patients. Ann Med Surg 14:8–11

    Article  CAS  Google Scholar 

  42. Simón-Allué R, Hernández-Gascón B, Lèoty L, Bellón JM, Peña E, Calvo B (2016) Prostheses size dependency of the mechanical response of the herniated human abdomen. Hernia 20:839–848

    Article  PubMed  Google Scholar 

  43. Szymczak C, Lubowiecka I, Tomaszewska A, Smietański M (2012) Investigation of abdomen surface deformation due to life excitation: implications for implant selection and orientation in laparoscopic ventral hernia repair. Clin Biomech 27:105–110

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Todros.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animals rights statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

This article does not contain patient data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Todros, S., Pachera, P., Baldan, N. et al. Computational modeling of abdominal hernia laparoscopic repair with a surgical mesh. Int J CARS 13, 73–81 (2018). https://doi.org/10.1007/s11548-017-1681-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-017-1681-7

Keywords

Navigation