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Abstract

Purpose This paper discusses a real-time simulation method of inextensible surgical thread based on the Cosserat rod theory
using position-based dynamics (PBD). The method realizes stable twining and knotting of surgical thread while including
inextensibility, bending, twisting and coupling effects.

Methods The Cosserat rod theory is used to model the nonlinear elastic behavior of surgical thread. The surgical thread
model is solved with PBD to achieve a real-time, extremely stable simulation. Due to the one-dimensional linear structure
of surgical thread, the direct solution of the distance constraint based on tridiagonal matrix algorithm is used to enhance
stretching resistance in every constraint projection iteration. In addition, continuous collision detection and collision response
guarantee a large time step and high performance. Furthermore, friction is integrated into the constraint projection process to
stabilize the twining of multiple threads and complex contact situations.

Results Through comparisons with existing methods, the surgical thread maintains constant length under large deformation
after applying the direct distance constraint in our method. The twining and knotting of multiple threads correspond to stable
solutions to contact and friction forces. A surgical suture scene is also modeled to demonstrate the practicality and simplicity
of our method.

Conclusions Our method achieves stable and fast simulation of inextensible surgical thread. Benefiting from the unified
particle framework, the rigid body, elastic rod, and soft body can be simultaneously simulated. The method is appropriate for
applications in virtual surgery that require multiple dynamic bodies.

Keywords Cosserat rod - Surgical thread - Virtual surgery - Position-based dynamics

Introduction

Surgical thread is a valuable material used during surgery that
helps reduce tissue damage and accelerate wound healing.
Existing suture training methods involve plastic materials or
animal tissues as an alternative to human soft tissue. Virtual
surgery systems serve as practical training aides for clinical
operations, helping novices familiarize themselves with med-
ical instruments and entire operation procedures by repeat-
edly simulating surgical maneuvers in a safe environment
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[1]. Therefore, an appropriate surgical thread simulation is
necessary for improving virtual surgery systems. Training
protocols that include suture steps in the procedure provide
a more complete learning experience that enhances trainee
immersion.

Surgical thread is represented as an elastic rod because
it has an axial length that is much larger than the other two
dimensions. An elastic rod exhibits typical nonlinear charac-
teristics when deformed and can exhibit large bending and
twisting strain with nearly constant length. The conventional
elastic rod model is described by the Cosserat theory. A
Cosserat rod is a physical model that describes an elastic rod
utilizing the material frame and directional curve [2]. The
primary goal of the real-time simulation of surgical thread is
to quickly and stably represent the typical characteristics of
real surgical thread, such as the coupling effects of bending
and twisting and inextensible behavior.

The computer graphics community has devoted significant
efforts toward building a real-time elastic rod; hair and rope
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simulations have been developed, and several applications in
the field of game have modeled real-time elastic rods [3-5].
For example, the mass spring model (MSM) and the finite
element model (FEM) have been optimized to construct hair
and rope physical models [6,7]. The MSM model is computa-
tionally fast but requires more complex topologies to support
nonlinear behavior, which includes the bending and twisting
of elastic rods. The FEM model, based on the Euler beam, has
high accuracy but requires intensive calculations and a rela-
tively small time step [8]. Therefore, Spillmann and Teschner
introduced the simulation of Cosserat rod elements based on
strain energy using the FEM model [2]. Additionally, Bergou
etal. [9] manipulated the centerline of the elasticrod to yield a
discrete format of the bend and twist energy equations. These
methods have a high accuracy and can represent complex
nonlinear deformation behaviors, although the numerical
steps are time consuming. Some experts have applied these
methods to real-time surgical thread simulations. Wang et al.
[10] used the Kirchhoff rod to describe surgical thread with
an inextensibility constraint, but this method was unable to
achieve an extremely stable simulation to accommodate a
large time step. By considering the high stability of position-
based dynamics (PBD), a large time step can be achieved
[11]. Previously, Kubiak et al. [12] introduced a method
based on PBD to simulate surgical thread, which allows
fast and stable simulations, but it cannot describe the cou-
pling effects of bending and twisting due to a weak physical
foundation. Following this method, ghost points were intro-
duced by Umetani el al. to represent the material frame as
particles [13]. However, the bending and twisting constraint
gradient directions have complicated formats, and comput-
ing them is time consuming. After quaternion is introduced
into PBD, the constraint is expanded from a scalar-valued
function to a vector-valued function [14]. In a recent study,
the material frame was parametrized as a quaternion. Thus,
the format of the constraint gradient becomes concise, and
the complexity is reduced during the constraint projection
[15]. However, due to the fixed and limited iteration count
used in the Gauss—Seidel method, its convergence cannot be
guaranteed, causing the constant length requirement for the
elastic rod to not always be fulfilled.

The scale of threads for surgery simulation is considerably
lower than that for real-time graphics applications. How-
ever, surgical thread simulation has more requirements for
expression precision related to the thread to thread inter-
actions, thread to soft body and rigid body interactions,
which involves collision detection and computing friction
for multiple objects. Furthermore, in the representation of
mechanical properties, bending and twisting coupling effects
and inextensible behavior should be considered. These fac-
tors make the surgical thread simulations unique with distinct
complexity. In addition to represent the surgical thread, the
inextensible Cosserat rod can also be used for simulating
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other medical instruments such as interventional guidewire
and gastric endoscope [16,17]. Based on PBD, surgical thread
simulation can be easily integrated into existing soft tissue
deform simulation, representing a highly practical approach
for medical development applications.

The method proposed in this paper simulates surgical
thread based on the Cosserat rod theory using PBD. The
method is fast and extremely stable, which are benefits of
PBD. Additionally, the simulated surgical thread exhibits
coupled bending and twisting effects. The tridiagonal matrix
algorithm is used to solve the direct solution of the distance
constraint, and the constraint of inextensible behavior can be
realized in a single iteration. The three key innovations in
this paper are as follows:

e The use of PBD and continuous collision detection to
achieve a large time step stable simulation of surgical
thread with high computational performance;

e The use of the one-dimensional linear geometric feature
of surgical thread to obtain strongly constrained inex-
tensibility by directly solving the problem based on the
tridiagonal matrix algorithm;

e The use of the unified particle framework, including an
elastic rod, soft body and rigid body, to simulate surgi-
cal suturing in a real-time application for fast, concise
implementation.

This paper is organized into three parts. First, we introduce
the method applying the Cosserat rod theory to PBD, explain
how to fulfill the distance constraint using the tridiagonal
matrix algorithm, and present continuous collision detection
and responses, supporting a large time step. Additionally, the
visual rendering method and simulation environment con-
structing are clarified. Second, the results section compares
simulations effect of three different types of elastic rods
using PBD with and without the inextensible effect, presents
simulations of tying a squared knot and of multiple threads
intertwining with a rigid body, and shows the construction of
a surgical suture scene. Third, the final section discusses the
advantages and disadvantages of our method and considers
its possible future applications.

Methods
Vector-value constraint-based PBD

PBD has been extensively used in applications ranging from
soft body simulation to rigid body and fluid simulations [18].
Overall, PBD still is a constraint-based optimization prob-
lem. However, the basic independent variable is expressed
as two forms: a position vector and an orientation quater-
nion. The dependent variable is a vector value. Here, we
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clarify the unified particle framework based on PBD; more
detailed descriptions of the improved process can be found
in previous works [11,13-15,18].

The body simulated is constructed as particles repre-
sented by positions and orientations. Position is defined by
the parameterized value x = [x 1, X2, ... ,x.,-] and orienta-
tion by ¢ = [q;. 4. ..., q;]. These two forms are unified
asp = [py.ps.....p,]. and the constraints are unified as
¢ =|[c1,c2,...,cn] Inthe iteration process, the problem to
be solved is corrected for position and orientation to yield:

Clp+Ap)~Cp)+VC(p) Ap =0. ey

As the number of unknown quantities is larger than the
number of equations in Eq. (1), the system state of the
simulated body is underdetermined. Considering the con-
servation of linear and angular momentum, the correction
direction of the independent variable is limited to be par-
allel to the direction of the gradient. Compared to the
scalar constraint, the gradient of the vector-value constraint
is replaced as m rows of a matrix instead of a single-
row vector. Then, we introduce the Lagrange multiplier
and the inverse of the mass and moment of inertia W =
diag m;‘,mgl,...,mjf],ll—l,lgl,...,I,;]]toweighnhe
position and orientation:

Ap =WVC )T . )
Substituting Eq. (2) into Eq. (1):
C(p)+VCP)WVC (p)Tr=0. 3)

Then, solving for A:

A=— (vc ») WVC (p)T>_1 C ). @

Substituting A into Eq. (2) to obtain the correction Ap:
T T\~ !
Ap = —WVC (p) (vc () WYC (p) ) cp). 6

These equations are used to update the positions and ori-
entations. In most situations, the constraint functions are not
linear forms of positions or orientations. Therefore, it is often
impossible to directly obtain the system state that satisfies
all the constraint functions. Using the Gauss—Seidel method,
the system state can be gradually corrected to satisfy the
constraint functions in each iteration. Although the fixed iter-
ation count cannot guarantee that the constraint functions are
completely satisfied, the Gauss—Seidel method can allow the
simulated body exhibit soft effects. A higher iteration count
means the body is more rigid. However, for inextensible
effects, it is necessary to ensure that distance constraints are

completely fulfilled. Benefitting from the tridiagonal matrix
algorithm, the direct solver can be used to ensure the dis-
tance constraints are fulfilled in every iteration. The detailed
implementation is elaborated in a later section.

The above derivation shows that the dynamic body sim-
ulated by the PBD should be initially discretized as a set
of positions and orientations. Then, the constraint function
should be provided to constrain the state of the positions and
orientations. In the solution stage, the main goal is to opti-
mize the solution of the positions and orientations to fulfill
the current constraint function. Therefore, the key is to find
concise and effective forms of constraint functions to repre-
sent dynamic behaviors.

Algorithm flow of a unified particle framework

One advantage of using PBD to simulate dynamic bodies is
that the soft body, rigid body, and elastic rod can be solved
with the unified particle framework [19]. In real-time appli-
cations of virtual surgery, a functional, whole scene always
contains multiple types of dynamic bodies, such as surgical
instruments, suture needles, and soft tissues. Integrating the
existing PBD and our method to achieve the physical visi-
ble for different objects in solving stage greatly improves the
stability of the multiple body dynamics. The algorithm flow
of the unified particle framework is described below.

In the algorithm outlined in Fig. 1, positions and orienta-
tions are treated in the same way. Before the simulation loop,
the position, velocity, and mass of all particles were initial-
ized. Similarly, the quaternion, the angular velocity, and the
moment of inertia for all orientations were initialized. To run
the simulation step, the explicit Euler integration algorithm
was used to predict positions and orientations. In this step,
the external force Fex¢ and torque T are introduced into simu-
lation. In general, gravity is represented as an external force.
For simulating surgical thread, the external torque loaded on
the thread is set to zero vector. Next, for all collision primi-
tives, continuous collision detection was used to generate a
collision constraint based on the state of the previous time
step and the current predicted time step. The collision con-
straints were combined with the general constraint for the
next step. Then, the above correction method was used to
project the constraints and to identify the appropriate cor-
rections for positions and orientations, which fulfilled the
constraint function to determine the correct state of the sim-
ulation body. Finally, the linear velocity and angular velocity
were updated with the correction positions and orientations.

Discrete Cosserat rod
In the Cosserat rod theory, the centerline of the elastic rod

is a directional curve [20]. Using the parameter s [0, 1] to
represent the rod from start to end, the vector-valued func-
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Algorithm 1 Unified Particle Framework
1: for all particles j do

— 0

2: initialize x; :m? Jvj =20, my=m

3: end for

4: for all orientations k do

5: initialize g, = ¢ , wy =w) , I, =1

6: end for

7: loop(timestep = At , timestep count = n + 1)
8: for all particles j do

9: predict velocity v} = (v7 + Atm ™' Feyy)
10: predict position z} = (z7} + Atv})

11: end for

12: for all orientations & do

13: predict angular velocity w} = w} + AtI 7! (), -

wi X (Irwy))

14: predict orientation q;, = g + 0.5Atqw};
15: end for

16: for all particles j do

17: generate collision constraint C .,

18: end for

19: loop max iteration count times
20: solve constraint function C to get Ap
21: update =7 = 27 + Ap;
22: update g} = q;, + Apjyk
23: normalize gj;
24: end loop
25: for all particles j do
26: update v; = (z} —x;)/At
27: update z; =
28: end for
29: for all orientations k£ do
30: update wy = [291qy,/At]
31 update q;, = qj,
32: end for
33: end loop

Fig.1 Algorithm flowchart of the unified particle framework

tion R (s) represents the material point on the elastic rod.
As shown in Fig. 2, to describe the degree of bending and
twisting, every material point was attached a material frame,
which was modeled with an orthogonal base [d{, d>, d3] in
which every vector is referred to as a director. For director
d3, the vector should occur along the same direction as the
tangent. For director d7, the vector should occur along the
direction of the principle normal, such that d; = d3 x d».
Therefore, we can measure the deformation behavior of the
elastic rod from the rotation of the material frame along the

material frame

N
material point

<4 —resting state
3

Fig.2 Material frame transformations along the centerline of the elastic
rod from start to end
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curve. In differential geometry, the Darboux vector 2 (s) is
used to parameterize the frame rotation:

3
1
Q) =5 di () xdi(s), ©)

k=1

where the prime (") denotes the derivative with respect to s.
The projection of the Darboux vector to the material point
coordinates was used to measure the bending and twisting
strain in the Cosserat rod theory:

£2i(s) =R (s) -di (5). (N

The strain measurement is the difference between the current
state (£21, §22, £23) and the resting configuration state (.Q?,
.Qg , Qg). 21 — .Q? and §2, — .Qg parameterize the degree
of bending strain, and §23 — .Qg parameterizes the degree of
twisting strain.

To introduce the Cosserat rod theory into PBD, the elastic
rod should be discrete. Using the theory proposed by Umetani
etal. [13] and improved by Kugelstadt and Schomer [15], the
curve of the elastic rod centerline is discretized as the rod ele-
ment. Every rod element is constructed as two particles and
one material frame. The rod element is connected by the same
particle as the linear structure (Fig. 3). The material frame is
parameterized as a quaternion corresponding to the remain-
ing configured material frame. There are two constraint types
generated from the Cosserat rod theory [15]. Here, we dis-
cuss only some concise clarifications; for more details, please
refer to the previous report. First, the elastic rod is inexten-
sible, and therefore, the stretch length should be constrained
to the same length as each rod element. Additionally, to cor-
rectly describe the bend and twist, the d3 director should
remain parallel to the rod element direction. These two char-
acterizations are integrated into the shear—stretch constraint
Eq. (8), in which p, and p, are the two end particles of the
same rod element. R (g) is the rotation matrix constructed by
the material frame quaternion. e3 is the resting state of the
d; director:

1
Cs(pl,pz,q)=7(p2—p1)—R<q>e3=0. ®)

Second, for bending and twisting deformation in a contin-
uous rod model, the Darboux vector in the material frame
coordinates can be parameterized as the orientation quater-
nion function:

2 =2qq'. ©))

The difference between the resting configurations can be cal-
culated by measuring the strain:

2-2°=2(aq -3'¢"). (10)
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rotate by q

two positions p
one orientations q

rod element

rest state

end to end

P2 girection Pn2

O/O\OO\O/O

Pn-1
dlscrete surglcal thread

Fig.3 Discrete surgical thread represented by connected rod elements

To solve for bending and twisting strain in PBD, the discrete
format of £2 — £2° based on the rod element is derived from
the adjacent quaternions through arithmetic mean interpo-
lation. Equation (11) describes the corresponding bend and
twist constraint, in which ¢ and u are the two adjacent mate-
rial frame quaternions. The right superscript O represents the
resting state, and 3 is the imaginary part vector of the quater-
nion result. In the discrete Cosserat rod, the discrete Darboux
vector is parametrized as the imaginary part of a quaternion
and used to measure the bending and twisting strain while
the material frame rotates along the centerline:

Coiqu)=3 (qu - qouo) —0. (11)

With the above two constraints given by Egs. (8) and (11),
we modeled the nonlinear deformation of surgical thread and
then solved the equations in the PBD framework. Next, we
explain how our method enhanced the constant length con-
straint of surgical thread.

Direct distance constraint (DDC)

From the above shear—stretch constraint, the inextensible
effects are coupled with the shear strain. Here, we separated
the distance constraint to yield strong stretching resistance:

Ci (pi-Piv1) = lp; =iyl —d. (12)
The surgical thread is an elastic rod with a one-dimensional
linear structure. Therefore, the distance constraints can be
characterized as chains with consecutive particles connected

in series. In this situation, the direct solution is an alternative
to the iterative solver for projecting the constraint. First, we

consider the situation in which the thread is fixed at the start
point (Fig. 4). As reported in the work of Han and Harada,
by expanding the distance constraint equations, their tridi-
agonal matrix format can be found and then directly solved
[21].

We modified Eq. (3) by changing the format of the equa-
tion to yield:

—C (p) = VC (p) WVCT (p) A, (13)

and we separately considered the distance constraint

Ci (p;.pi41), which has a gradient of g—lc,f =— a;_cil =n; =
i i+
%. For a distance constraint with only two indepen-
i~ Pi+l

dent variables, the two corresponding point gradients were
nonzero, and the remaining point gradients were zero with
the single constraint. Then, we extracted a single column of

Ci (pi-pit):

0C; 0C;
—wig— = (14)
8p1 apt—H

Initially, the inverse mass of the starting point was fixed at
w1 = 0, whereas w; = 1. Combining the columns and mov-
ing the left negative to right side of the equation yielded the
new format of Eq. (13):

fixed point P1

instrument

left part right part

(‘)predicted point

Ocorrect point

Fig.4 A single surgical thread constrained by two separate direct dis-
tance constraints and connected at the instrument holding point

surgical thread
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C] -1 niny 0 s 0
C2 niny -2 nns - - - 0
Cr—1 0 n_ng_2 =2  npRg_

Cy 0 . 0 ning_| -2

Al

A2

X . (15)
Ak—1
Ak

The equations make up a typical tridiagonal matrix. The
Thomas algorithm was used to directly solve A in a single
iteration [21]. Then, the correction of the particles can be
easily achieved by Eq. (2). If we loop the direct solution into
every iteration, the inextensible effect can be immediately
achieved.

In most real clinical situations, surgical thread interacts
with an instrument. In considering this factor (Fig. 4), a point
was fixed to the instrument handle with the inverse of the
point mass set to 0. Thus, the surgical thread was implicitly
separated into two inextensible elastic rods.

Continuous collision detection and responses

In the surgical thread suture process, multiple contacts
between threads and instruments occur during knot tying
[22]. Due to the large deformation, self-collision and inter-
section occur very often. Additionally, the diameter of the
surgical thread is small, and discrete collision detection
would fail under a large relative velocity and simulation time
step [23]. Considering the above situation, continuous colli-
sion detection based on the spatial hash method was applied
to yield robust contact information [24]. Here, we provide a
bottom-up interpretation (Fig. 5).

The surgical thread is discretized as fixed-length rod seg-
ments that closely connect with each other. Benefiting from
the unified size of the primitive segments, the spatial hash
method works in appropriate situations. In the existing rope
collision detection framework of the narrow phase, the inter-
section of two lines with no-thickness is generally calculated
while they are coplanar. In this case, a cubic equation must be
solved. Additionally, if the rope thickness is considered, the
extra optimization should be added to avoid the false nega-
tive case, which would increase the computational cost. If the
entire thread is discretized as closely arranged spheres, only
a quadratic equation must be solved in the sphere—sphere
case, where the rope thickness is naturally considered to be
the sphere radius. Therefore, we chose the thickness of the
surgical thread as the rod element length to model the sur-
gical thread. At every nodal point, the collision sphere was
generated by the thickness radius (Fig. 5). For continuous
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| phase

) space hash 4£j>
oy
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phase

AABB bounding box

_ 4>

- narrow

. N7 . phase
continuous collision detection

\

s, diameter D .-

physical model

collision model

Fig.5 The surgical thread is discretized as closely connected primitive
spheres. In the narrow phase, continuous collision detection is used to
detect the time of collision. In the middle phase, the AABB bounding
box is used to bound the current and predicted positions. In the wide
phase, the space hash method is used for culling

sphere—sphere collision detection, the predicted position was
used to calculate the route of sphere movement. In the middle
phase, the AABB bounding box was used to cover the mov-
ing segment of the sphere with the radius offset. In the wide
phase, the simulation space was separated as an independent
cubic cell. The bounding boxes were hashed to distribute
each cell for culling. During the collision detection process,
only primitive pairs in the same cell should be tested. The
advantage of the above method is that it can support robust,
large time step surgical thread simulations. In addition, the
space hash method in the wide phase can be easily paralleled
on a CPU or a GPU.

To apply contact information to increase the simulation
stability, the collision response with frictional forces was
solved. In most physical simulation methods, the collision
response is based on the impulse of velocity or force, whereas
solving for friction involves decreasing the velocity. How-
ever, in the PBD method, the position of the particles is
constrained first, and the velocity is updated later. There-
fore, we applied the position-based constraint to handle the
collision response and friction to achieve more stable con-
tact resolution. As shown in Fig. 6, there are two collision
constraints between two contact particles p; and p,:

e Continuous collision constraint: C (pl,pz) = (pl —pz)-
normal — d. This constraint maintains the relative posi-
tion of the two particles as a function of collision time.
The distance between two contact particles is larger than
the surgical thread diameter to avoid overlap.
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. \ -
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‘\ \\>\ \
.~ ' p I‘
N v P2
~ ANIRY

Aide perpendicular
to normal

collision-free state time of collision state

Fig. 6 The normal direction is calculated at the time of the collision.
Then, the collision response is solved to obtain the collision-free state.
Cr measures the direction perpendicular to the normal direction. C¢
measures the projection length between the two particles along the nor-
mal direction

—P>
) o b7 . :
(the gradient derivation in “Appendix” sectlon). This

constraint tries to maintain the direction of the current
location to match the normal direction in the state of col-
lision time. The parameter k is the friction strength and
is between 0 and 1; the friction force is smaller when k is
closer to 0. When k = 1, the contact point cannot move
perpendicular to the normal direction.

e Friction constraint: Cr (py, p,) = x normal

Energy dissipation

Energy dissipation is a typical feature of surgical thread that
distinguishes from ideal Cosserat rod. There are two sepa-
rate parameters to control the dissipation of surgical thread
in our method. One is the damping factor of linear veloc-
ity d,, and it can achieve the energy dissipation caused by
stretching and compressing. Another is the damping factor
of angular velocity d,,, and it can achieve the energy dissi-
pation caused by bending and twisting. In every time step,
after finishing the constraint projection process, the linear
and angular velocity of each particles is updated by correc-
tions of positions and quaternions. Then, Egs. (16) and (17)
are used to damp the velocity for representing the internal
dissipation:

vy =(1—dy)>, (16)
w=(-d)" o, (17

the At is the simulation time step. Based on the above equa-
tions, the damping factors represent the damping ratio per
second of the corresponding velocities. These two param-
eters are time step independent. The value of damping
factor is between O and 1. Larger the damping factor,
the more energy is dissipated and the model stabilized
faster.

Model rendering and scene building

The geometrical model to render the scene in real-time is
based on triangular mesh data. To render a deformable body,
vertex animation technology is used to directly modify the
vertex position [25]. Considering that the surgical thread
physical model is based on discrete rod elements, a skeletal
animation method was used for high-performance rendering.
As shown in Fig. 7 and based on geometrical parameters,
such as surgical thread length and diameter, triangular mesh
data were generated and referred to as skinned mesh. Then,
in every particle of the rod element, a bone was defined with
the same position and rotation as the rod element and was
parameterized as a quaternion. Additionally, for each bone
considering the rod element influence area, the bone weight
of each vertex was calculated based on the distance of the
vertex and bone. In the animation process, the rod element
states were first updated from the result of the physical simu-
lation; the bone was then transformed by the rod element; and
finally, the vertex position of the mesh data was updated by
the bone to achieve the goal of rendering surgical thread. The
animation method based on skeletal animation controlled the
freedom of the model to simulation nodes and reduced the
computational cost for rendering model updates.

To build a complete high-quality software program, the
Unity3D engine was used for multiple platform development
[26]. The complex numerical computation and data commu-
nication were managed under the cross-platform Mono .NET
framework using C# programming language. Thus far, we

triangular mesh

o. ,\

; ." v bones

bone,
bonez bone3
skinned mesh render

geometry structure

render effect

Fig.7 The surgical thread is represented by a surface triangular mesh.
The vertex position is determined by the corresponding bone object, in
which the weight is inversely proportional to the distance
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Fig.8 The surgical thread is
pinned at the end point as shown
in a resting state, in which a
relative circle rotation and
translation bear down on it; b
method’s bend and twist
coupling effect; ¢ bend and twist
coupling effect in the
position-based Cosserat rod; d
only bend effect in
position-based dynamics using
distance and edge bending
constraints; and e-h
corresponding bone info for the
left side from top view
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(a) rest state (e) bone info

(b) our method E (f) bone info

>

(c) position-based elastic rod (g) bone info

N

.

>

(d) position-based dynamics (h) bone info




International Journal of Computer Assisted Radiology and Surgery (2018) 13:1019-1035 1027

K,=0.005
K:=0.1

K,=0.05
Kt=0.1

Kb=0.5
Kt=0.1

Fig.9 The surgical threads are pinned at the end points with the same twisting constraint stiffness and different bending constraint stiffness. The

right end rotates 10 radians around the world horizontal axis

O X‘
0Ss
lGravity
0.18
0.2S
Yvy ——  Our Method
— Discrete Elastic Rod

Fig. 10 The surgical threads reflects similar visual behavior based on
our method and discrete elastic rod. Our method keeps the constant
length of the surgical thread

have explained the implementation of the complete system
including calculation and rendering. The above section con-
tains the most vital part of the real-time inextensible surgical
thread simulation.

Results

Our method and test environment were based on the Unity3D
engine, which was run on a Windows platform with an Intel
Corei7-7700 CPU @ 3.6 GHz and NVIDIA GTX 1070 GPU.
The program runs in a single thread without multiple thread
optimization for comparing computational costs.

Comparison between different PBD methods

To test the different PBD method applied to simulate surgical
thread, we built a scene with one surgical thread fixed at
two ends. The surgical thread was constructed with 40 rod
elements. The total length was 15 cm. During the deformation
process, the two ends of the surgical thread underwent a 5-
cm relative translation with a 360-degree relative rotation.

(a) initial state == (b) compressing state == (c) release state

mm) (d) recovery state

Fig. 11 For measuring the controllability of internal dissipation through adjusting damping factor, the surgical thread is compressed and then

released
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Here, we compare our method with a position-based elastic
rods (PBER) proposed by Umetani et al. and PBD that uses
distance and bending constraints.

Figure 8 illustrates the final form of the surgical thread
using the different methods. We observed that our method
and the PBER method generated realistic bending and twist-
ing coupling effects not similar to those of the simple PBD.
Additionally, we recorded the physical computation time dur-
ing the simulation. Our method cost an average of 2.68 ms
per frame. The PBER method costs an average of 32.44 ms
per frame. The PBD with the simple constraint costs an aver-
age of 2.24 ms per frame. Therefore, compared to the PBER
method, our method required less time and yielded good
frame rate performance with a very similar effect.

Through adjusting the stiffness of bending and twisting
constraint, our method is able to simulate surgical threads
with different bending and twisting modulus. As shown in
Fig. 9, the left end of surgical thread is fixed. The right
end rotates 107 radians around the world horizontal axis.
With the constant twisting stiffness Ky, the surgical thread
winds less circles, while the bending stiffness K, decreases.
It reflects the positive correlation between constraint stiff-
ness and physical parameters. In addition, a surgical thread
is simulated by our method and [9] separately. The left end of
surgical thread is fixed, and the right end of it falls down. We
record the state of 0, 0.1 and 0.2 s. Figure 10 shows the similar
effects of our method to the discrete elastic rod. The bending
modulus of discrete elastic rod is 2 GPa, and the twisting
modulus is 10 GPa. The bending stiffness of our method
is 0.05, and the twisting stiffness of our method is 0.25.
However, it is hard to find the exact relationship between
the constraints stiffness and the physical parameters. But it
is easy to control the model behavior through adjusting the
constraint stiffness.

In order to test the internal dissipation, a surgical thread is
simulated with length of 2 cm. There is no friction and grav-
ity force in the environment. The thread is constructed by 49
rod elements. As shown in Fig. 11, the left end of it is fixed,
and the right end of it moved 1 cm to compress the thread.
Then, the right end is released. The surgical thread reverts to
the initial state. We record the surgical thread with angular
velocity damping factor d,; of 0, 0.2, and 0.4. There are 500
frames captured since the time when right end released. The
total distance of each particles to their initial states is calcu-
lated as in Fig. 12. When the damping factor is lower, the
surgical thread recovery is slower. If the damping factor is O,
the model keeps moving.

Inextensible effect of surgical thread
To test the constraint strength for constant length of the DDC,

we compared two surgical threads either with or without the
DDC constraints; the other parameters of the surgical thread

@ Springer

distance (cm)

0 100 200 300 400 500
frame count

Fig. 12 The frame count and total distance relationship under different
angular velocity damping factor. The distance is the sum of each particle
to their initial state in the corresponding render frame

remained unchanged. The surgical thread is constructed as
120 rod elements, and the total length was 15 cm. In the scene,
one end of the surgical thread was pinned, and the other end
was dropped and hung freely due to gravity. To illustrate
the effect of bending and twisting, the default shape of the
surgical thread was a spiral. As shown in Fig. 13, we captured
the scene view, the length, and the time cost per frame for 5,
10, 20, and 40 iteration counts.

Intuitively, as shown from left to right in Fig. 13, for the
same iteration count, the length of the surgical thread with
the DDC was generally smaller than that without the DDC
and was closer to the original length.

Additionally, as shown by the images in Fig. 13 from top
to bottom, for different iteration counts, we observed that
the length of the surgical thread without the DDC gradu-
ally shortened to the original length. However, the length
of surgical thread with the DDC remained stable and was
very close to the original length. The above conclusions
are depicted more accurately in Fig. 14. When the iteration
counts increased, the length elongation of the surgical thread
with DDC was always less than 3.2% and remained stable,
whereas the length elongation of the surgical thread without
the DDC exhibited a decreasing trend. However, the mini-
mum length elongation of 4.2% was achieved at 40 iterations,
and the maximum length elongation of 38.9% was observed
at 5 iterations, both of which are greater than the elongation
with the DDC.

Figure 15 presents the time costs of these two surgical
thread simulations after different numbers of iterations. For
these limited data, the time cost per frame and iteration count
were linearly related. The time cost per frame of the surgical
thread simulation with the DDC was slightly longer than that
without the DDC. However, even after 40 iterations, the time
cost remained close to real-time conditions.
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Fig. 13 Left side: a—d surgical W|th D DC ‘.

thread without the DDC. Right
side: e-h surgical thread with
the DDC. The images from top
to bottom represent increasing
iteration counts from 5 to 40

(a) 5 iteration counts
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(b) 10 iteration counts
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/
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~ (c) 15 iteration counts
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(d) 20 iteration counts

(e) 5 iteration counts

(f) 10 iteration counts

(g) 15 iteration counts

(h) 20 iteration counts
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-@— With DDC
—A— Without DDC

Length (cm)

5 10 20 40
Iteration Count

Fig. 14 As the iteration count increases, the length becomes more con-
stant. With the DDC, the surgical thread shows smaller elongation
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Fig. 15 As the iteration count increases, the time cost per frame
increases linearly. The introduction of the DDC resulted in a slight
increase in the calculation time

The above results show that by introducing the DDC, we
achieved an almost constant length of surgical thread, which
added a small computational cost. We believe this cost was
outweighed by the benefits of improved the simulation sta-
bility and subsequent collision detection.

Complex contact resolution

Based on continuous collision detection and collision res
ponse constraints, multiple primitive contacts were resolved
per iteration loop. This is a significant result for a surgical
thread simulation due to the amount of self-collision that
occurs during the suturing process. Figure 16 simulates a
single surgical thread tied in a square knot, which consists
of two throws. In Fig. 16a, the throws are constructed by
crossing the ends of the suture to create a loop, one end of
which is then wrapped around the other end. In Fig. 16b,
one end has been wrapped around the other end by passing
it under the long end and up through the loop to complete
the first throw. In Fig. 16c, the second throw also begins with
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one end crossing the other end, which is the same as the first
throw. In Fig. 16d, the knot has been tightened, and the result
is a square knot.

To check the interaction between surgical thread and a
rigid body, a cylinder was constructed with surgical thread
(Fig. 17), and a single throw was tied around the cylinder as
shown in Fig. 17b. Figure 17c shows that the friction con-
straint between the rigid body and the surgical thread caused
by spiral winding indicated no relative slip.

We constructed three surgical threads wound around each
other as shown in Fig. 18. Almost three complete threads
were required for collision constraints, whereas the effect
remained stable without sliding or penetrating. Figure 18c
illustrates the corresponding solution results of the physical
particles.

Soft tissue suturing simulation

Finally, a soft tissue suturing simulation was built based on
the unified particle framework. As Fig. 19 shows, the scenes
contained the dynamic body of a cubic soft tissue, a suture
needle with an instrument handle, and surgical thread. Fig-
ure 19a shows the resting state of the interaction between the
surgical thread and the soft tissue body; Fig. 19b shows the
surgical thread passing through the soft tissue body; Fig. 19¢
demonstrates the final state of surgical thread suturing in
which the two separated soft tissue bodies are pulled together
by the surgical thread. The collision information is shown in
Fig. 19d, in which the soft tissue was constructed as edge
primitives, and the surgical thread was constructed as sphere
primitives. The collision pair of the blue-colored edge and
the red-colored sphere was used to generate the collision
constraint, which was then corrected to the appropriate posi-
tion for the final rendering. The soft tissue was represented
by a soft body. The suture needle and the instrument han-
dle are represented by a rigid body. The surgical thread is
represented as an elastic rod. All the dynamic bodies were
calculated using the unified particle framework to achieve
physical visible interactions in a stable simulation. Due to
the unified simulation of multiple dynamics, the entire vir-
tual surgery system can be quickly and accurately built.

Conclusions

This paper discusses the key methods used for the surgical
suturing simulation. Our method based on PBD achieved
a unified particle framework to simulate rigid body, elastic
rod and soft body. To recreate the inextensible character-
istics of surgical thread, the direct solution of the distance
constraint was derived from the one-dimensional linear geo-
metrical structure based on the tridiagonal matrix algorithm.
This method fulfills the distance constraint per iteration to
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(d) (c)

Fig. 16 A square knot-tying process is simulated in our method by four steps

(b)

Fig.17 A surgical thread is tied with a rigid body in three steps: a resting state, b basic knot, ¢ wrapping around
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(c)

Fig. 18 Multiple surgical threads under two complex twining states: a resting state, b twined state; ¢ physical information relating to the thread

(d) (c)

Fig. 19 Soft tissue suturing scenes depicting three states: a resting state, b the surgical thread penetrating the soft tissue, ¢ the completed suturing
process; d corresponding collision information with the thread collision primitive (red dots) and soft tissue collision primitive (blue edge)
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Fig. 20 Interventional guidewire demonstration simulated in the uni-
fied particle framework

incorporate a constant length of surgical thread with the
shear—stretch constraint. To stabilize the collision response
and to solve for the friction in order to simulate compli-
cated knot tying and binding, primitive particle continuous
collision detection was used to achieve a large time step and
accurate collision detection. Then, the collision response and
friction constraint were applied to the constraint projection
step for a fast, stable simulation. Finally, by building the soft
tissue suturing simulation scene, the interaction between the
surgical thread and soft tissue was simulated. The program
can run on a single CPU core in real-time without multiple
thread optimization.

Due to long-standing problems with PBD, simulation
effects are related to the iteration count and stiffness param-
eter. Additionally, the deformation calculation is based on
directly correcting the position of particles, and therefore,
the force-related effects cannot be easily calculated. In the
future, extended position-based dynamics (XPBD) can be
used to decouple the iteration count to more easily control
simulation effects [27,28]. For more precisely representing
the Coulomb model, the relationship between constraint stiff-
ness and embedding distance should be considered during the
collision of two segments.

In virtual surgery system, force feedback can be used
to measure the effectiveness of operation and enhance the
immersion of operators. Although in our method, it is not
able to directly obtain the force on the surgical thread. But
still there are two ways to extend it for force-based applica-
tion. One is trying to integrate exist force-based method with
PBD, such as mass spring model or finite element method.
Another way is to extend the PBD, such as the XPBD, it
introduces the constraint energy and compliance parameter
for measuring the constraint force, and it only increases a

little time consumption and can be applied to our method
directly. Therefore, it is easily to produce the force for later
force-based application based on our method. Meanwhile,
the mechanics experiment on the real surgical thread should
be conducted to measure the accuracy of those simulation
methods.

Additionally, considering the general applications of the
Cosserat rod to the medical field, the interventional guidewire
and the gastric endoscope could also be simulated using our
framework. Figure 20 presents a demonstration of the inter-
ventional operation process, in which the guidewire reflects
real characteristics, including twisting and bending effects.
Therefore, it is important to extend the applications of our
method.
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Appendix: Friction constraint gradient
derivation

. . . . _ pl 7p2

The friction constraintis Cy (p;. p,) =k b —p27 x normal|.

Wesetqg = |§ 4 _ﬁ 2| x normal. The derivative with respect to
17P2

pris

0Ct (pr.p2) _ (9 \" 0 (kgD
== ) (18)

op; ap; oq

We calculate the left and right part of Eq. (18) separately.
The right part is

P1—P2
okla) _, a4 _, Tpopa] X0 (19)
aq |q| P17P2 X normal
p1—p2]

@ Springer


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

1034 International Journal of Computer Assisted Radiology and Surgery (2018) 13:1019-1035

The left part in the transpose is

P1=P2

op; p;

The cross product matrix is used to convert the cross product
to matrix multiplication:

9 ( PIP2 o normal) ~ 9 ([—normal] X M)

|P1 —P2 | — |P1 —P2 |
op; opy
P ( P1—P2 )
= [—normal] x M, (21)
p;
2 T
Lp; —p2|” — (o1 —p2) (P1 —P2)

= [—normal] x

IPI —D2 |3
(22)

Substituting Egs. (19) and (22) into Eq. (18), we get

aCs (p1.p2)
op;

Hpr =al’ =01 —p2) (s —m)T) .

= | [-normal] x
< |pl —172|3

P1—P2
o Jp1=p]
P1—P2
Ip1—p2]

x normal

(23)

X normal‘

And the derivative with respect to p, is

0Ci (p1.p2) _ _9Ci (p1.p2)

) (24)
p, op;

Rule 1 For scalar y, column vectoruand x,if y = f (u) ,u =
9 Ty

g (x), we can get a—f: = (&) %

Rule 2 For vector a and vectorb,a x b = —b x a.

Rule 3 For vector a and vector b, the cross product can be

expressed as matrix multiplication:

0 —a3 ar b
axb=[a]lxb=|a; 0 —aj by |. (25)
—ap ai 0 b3
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