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Abstract
Purpose Endovascular intervention is limited by two-dimensional intraoperative imaging and prolonged procedure times in
the presence of complex anatomies. Robotic catheter technology could offer benefits such as reduced radiation exposure to the
clinician and improved intravascular navigation. Incorporating three-dimensional preoperative imaging into a semiautonomous
robotic catheterization platformhas the potential for safer andmore precise navigation. This paper discusses a semiautonomous
robotic catheter platform based on previous work (Rafii-Tari et al., in: MICCAI2013, pp 369–377. https://doi.org/10.1007/
978-3-642-40763-5_46, 2013) by proposing a method to address anatomical variability among aortic arches. It incorporates
anatomical information in the process of catheter trajectories optimization, hence can adapt to the scale and orientation
differences among patient-specific anatomies.
Methods Statistical modeling is implemented to encode the catheter motions of both proximal and distal sites based on
cannulation data obtained from a single phantom by an expert operator. Non-rigid registration is applied to obtain a warping
function to map catheter tip trajectories into other anatomically similar but shape/scale/orientation different models. The
remapped trajectories were used to generate robot trajectories to conduct a collaborative cannulation task under flow simula-
tions. Cross-validations were performed to test the performance of the non-rigid registration. Success rates of the cannulation
task executed by the robotic platform were measured. The quality of the catheterization was also assessed using performance
metrics for manual and robotic approaches. Furthermore, the contact forces between the instruments and the phantoms were
measured and compared for both approaches.
Results The success rate for semiautomatic cannulation is 98.1% under dry simulation and 94.4% under continuous flow
simulation. The proposed robotic approach achieved smoother catheter paths than manual approach. The mean contact forces
have been reduced by 33.3% with the robotic approach, and 70.6% less STDEV forces were observed with the robot.
Conclusions This work provides insights into catheter task planning and an improved design of hands-on ergonomic catheter
navigation robots.

Keywords Robotic catheterization · Robotic surgery · Human–robot collaboration · Imitation learning

Introduction

Endovascular intervention has become mainstay treatment
formanyvascular pathologies. Endovascularmanipulationof
catheters and guidewires by the clinician under fluoroscopy is
necessary to reach target areas anddeliver treatment. In recent
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years, there has been a growing interest in robot-assisted
catheter navigation systems. Compared to manual catheter-
ization, these platforms have potential advantages such as
added stability and precision of movement, increased com-
fort for the operator, and reduced radiation from ionizing
sources [1]. Recent advances in imaging, machine learn-
ing and robotic technologies may enhance robot-assisted
catheterization. Learned motion patterns and tool move-
ment profiles from multiple operators and demonstrations
can be applied to semiautonomous robotic catheterization
within different anatomical geometries. This can poten-
tially reduce the cognitive workload of the operator while
minimizing access path-related complications such as per-
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Fig. 1 Examples of catheter tip motion (blue line) transformation from a demonstration anatomy (center) to target anatomies (left and right), the
shape of the tip trajectories varies in orientation and scale after transformation

foration, embolization, and dissection caused by excessive
interactions between surgical instruments and the vascula-
ture, especially in diseased and weakened vessels [2].

One of the most commonly used commercially avail-
able steerable platforms for endovascular intervention is the
Magellan System (Hansen Medical, Mountain View, CA,
USA), though many master/slave platforms have also been
developed for standard catheters in the research domain [3].
Instrumentmanipulation is achieved throughmulti-DoF hap-
tic interfaces or joysticks which alter the natural patterns
of catheter manipulation, thus failing to utilize the opera-
tors experience obtained from conventional catheterization.
There has been a growing interest in developing ergonomic
master interfaces that can potentially utilize the experience-
related skills of the endovascular interventionalist [4].

Recent research has explored the application of the “learn-
ing from demonstration” (LfD) framework, commonly used
in robotics, toward automating some aspects of minimally
invasive surgeries. These studies include complete automa-
tion of time-consuming and repetitive tasks [5], as well as
collaborative surgery in which the control is shared back
and forth between the operator and the robot [6]. Recent
studies have looked into generalizing learned demonstra-
tions to previously unseen initial conditions [7], as well as an
adaptive trajectory planning to deal with dynamic changes
in the environment [8]. In the field of endovascular inter-
vention, these learning-based techniques have been used for
automation of a catheterization task based on motion tra-
jectories from expert demonstrations. These studies have
demonstrated that by using a robotic driver, improvements
over manual catheterization are possible [9]. Expert sur-
geons’ skill models were also used to train novice operators
through providing haptic feedback in a customized training
platform [10]. Preoperative images for surgical navigation
also offer the possibility for robotic path planning based on
anatomical information. Commercial robotic systems such

as the Sensei X system (Hansen Medical, Mountain View,
CA, USA) integrated 3D electroanatomic mapping (EAM)
technology for improved navigation of the robotic catheter
[11]. Other research [12] applied skeletonization techniques
(as in CT angiography) to extract blood vessel centerlines,
achieving efficient path planning for endovascular surgical
tools. More recently, a cooperative robotic catheterization
platform was developed for adapting learned trajectories to
different vascular anatomies using shared control navigation
[13]. However, directly integrating anatomical landmarks to
aid semiautonomous robotic catheterization within different
anatomical settings have not been explored as yet.

In previous work [9], a LfD framework was devel-
oped to partially automate endovascular procedures through
encoding and replicating operators’ hand motion patterns.
This paper improves this semiautomatic robotic catheteriza-
tion framework by addressing the subject-specific variabil-
ity among type I aortic arches, through incorporating the
anatomical information obtained from preoperative image
data. In the proposed approach, catheter tip positions at the
distal end and axial/rotational motions exerted by the opera-
tor at the proximal end were obtained from demonstrations
performed on vascular models. These are jointly used to
train statistical models that encode the essential motion pat-
terns of the operator and the catheter motions. Together with
the model’s anatomical information, a trajectory generator
is proposed to generate patient-specific trajectories that can
potentially tolerate catheterization task scale and orientation
differences. From this, a robotic catheter control sequence
can be determined for different vascular models by integrat-
ing anatomical information through non-rigid registration
techniques. Figure 1 demonstrates our approach for mapping
catheter tip motions to different anatomies. The approach is
verified by testing the generated robotic trajectories into dif-
ferent vascularmodelswith flow simulation, achieving a high
success rate for cannulation tasks under continuous flow sim-
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Fig. 2 A schematic diagram of the proposed robotic trajectory optimization method by incorporating anatomical information. “Demo” is the short
form for “demonstration”

ulation. The quality of the catheterization is further assessed
by comparing the proposed robotic approach against manual
techniques. The robotic approach achieved smoother catheter
paths, and the catheter also exerted less contact forces on the
phantom, which potentially reduce the risk of complications
such as perforation and dissection of diseased blood vessel.
The proposed platform provides insights into endovascular
task planning based on preoperative image data, and design-
ing of a hands-on catheter navigation system that utilizes the
natural skills of the operator.

Materials andmethods

An overview of the proposed methods for adapting robotic
trajectories to new anatomical models is shown in Fig. 2. The
details are explained in this section including the methodolo-
gies for catheter motion modeling, the transformation of the
catheter tip motion, and trajectory optimization. The valida-
tion method for each module is introduced as well.

Catheterizationmotionmodeling

Our method for catheterization motion modeling is based
on the previous work of the authors in [9]. Gaussian Mix-
ture Models (GMM) were used to train models of catheter
proximal motions and catheter tip motions jointly from
demonstrations. The objectives are: (1) capture the underly-
ingmotion patterns of the catheter for a catheterization task in
a specific type of aortic arch (type I); (2) encode the correla-
tion between catheter proximal motions and tip motions; and
(3) produce smoothed robotic trajectories that are executed
on the robotic catheterization platform [9].

Task demonstration Catheter proximal and tip motion data
were collected during catheterization tasks performed by
an expert vascular surgeon (experienced more than 300
endovascular cases). The specific task consisted of cannu-
lating the innominate artery of a silicone-based, transparent,
anthropomorphic phantom, of a standard type I aortic arch.

Three type I arch models were used in this study, namely a
healthy arch (Phantom A) (Fig. 3b), one with an aneurysm
(Phantom B) (Fig. 3c), and one with a recreated steno-
sis (Phantom C) (Fig. 3d) (Elastrat Sarl, Switzerland). Six
demonstrations were collected from each phantom. The
demonstrations from one phantom were used to train the
trajectory generator, whereas demonstrations from the other
two phantoms were taken to verify the performance of the
robot trajectory. The starting positions of the catheter tipwere
aligned with the origin of the left coronary artery (LCA),
whereas the ending positions of the procedurewere located at
the bifurcation site between the right common carotid artery
and the right subclavian artery (see Fig. 3). A 5F shaped
catheter and a 0.035′′ guidewire were used in this study. A
camera was mounted above the vascular phantom, and 2D
projected images of the phantom were then displayed on a
monitor for navigation. Catheter tip positions (x, y, z) were
collected from a six-DoF electromagnetic (EM) position sen-
sor (Aurora, NDI) which was attached to the catheter tip.
Catheter proximal motion data, which consists of two DoF
axial (d) and rotational (θ ) motions of the catheter, were
measured fromcustom-designed sensors, as presented in pre-
vious works [9], through LabVIEW (National Instruments
Corp., TX, USA). Recording of catheter tip positions and
the proximal motions were synchronized and sampled at a
rate of 33Hz. The experimental setups for data collection are
shown in Fig. 3a.

Catheter motion modeling The data gathered from a sin-
gle demonstration are λ = {t, x, y, z, d, θ}, which consist
of time, catheter tip position and axial/rotational motion
signals. The datasets in each demonstration were manually
segmented into three procedural phases: (1) traversing the
descending aorta, (2) traveling through the aortic arch, and
(3) cannulation of the innominate artery. Segmented datasets
from each phase were temporally aligned using Dynamic
Time Warping (DTW). GMM was used to generate the
probabilistic representation of the dataset.AGMMofK com-
ponents can be defined as:
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Fig. 3 a The experimental setup of data collection, b vascular phantom with a healthy arch, c vascular phantom with aneurysm, d vascular phantom
with recreated stenosis. Red and orange points represent the starting and ending positions of the procedure, respectively, whereas blue points are
the positions of LCA

p(λ) =
K∑

k=1

p(k)p(λ|k) (1)

where p(k) is the prior. The continuous observation proba-
bility distribution is p(λ|k) = N (λ|μk,Σk) where μk and
Σk are the mean and covariance matrices of the Gaussian
state k, respectively. The GMMs were then trained by the
ExpectationMaximization (EM) algorithm for estimating the
maximum log-likelihood of the GMM parameters. The opti-
mal number of Gaussian components (K ) was selected based
on the Bayesian information criterion [14].

Catheter tip motion transformation

The method for calculating the catheter tip motion trans-
formation is based on the trajectory transfer algorithm
previously reported in [7]. The aim is to map the catheter
tip trajectories from the demonstration anatomy into target
anatomies. New tip trajectories were used to estimate new
proximal motions of the catheter for the target anatomy.
Firstly, vessel centerlines that represent the essential shapes
of the blood vessels were extracted from 3Dmeshes obtained
from CT scans of all three vascular phantoms. The center-
line extraction was achieved using The Vascular Modeling
Toolkit (vmtk) [15]. The starting and ending positions of
the centerlines extracted are the same as that of the demon-
stration task to ensure the centerlines of all phantoms are
anatomically equivalent. Non-rigid registration was per-
formed between centerlines of the demonstration and target
anatomies, and the transformation function fwas then used to
warp the demonstrated tip trajectories into new anatomies.
We used the coherent point drift (CPD) algorithm [16] in
MATLAB for non-rigid registration. The centerline X in the
demonstration anatomy consists of aM×Dmatrix, whereD
is the dimension of the points, and the centerlineY in the tar-

get anatomy consists of an N×Dmatrix. The result from the
registration is to compute the warping function f that maps
each point in X into the corresponding target point set Y,
which is equivalent to solving an optimization problem:

minimize
f

{
−

N∑

n=1

log
M∑

m=1

e
− 1

2

∥∥∥ xn−ym
σ

∥∥∥
2
}

+ Regularizer (f)

(2)

where σ is the standard deviation of each GMM (for CPD
algorithm) component that is generated from both matrices,
and the regularizer is a function that allows the transformation
to be smooth. The transformation matrix f was then applied
to warp the demonstrated trajectories.

In order to validate the accuracy of the transferred catheter
tip trajectories after the registration, a cross-validation was
performed. The distance values calculated by DTW were
used as a measure of similarity between the simulated tip
motion trajectories and the demonstrated trajectories in the
same vascular model. Firstly, the distance values were cal-
culated between each demonstrated trajectory in the same
phantom, and the largest distance value was set as the limit
to assess the transferred trajectories. Then, each transferred
trajectory was compared to all demonstrated trajectories, and
the transferred trajectory was counted as accurate if the aver-
age distance valuewas smaller than the limit determined from
the previous step.

Trajectory optimization and robot trajectory
generation

The learnedGMMswere used to estimate the axial/rotational
motions from the simulated catheter tipmotions after the non-
rigid registration. The simulated tip positions ξt were used as
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Fig. 4 Proposed robotic platform for validation, including the CAD
model of the cathetermanipulator and a hybrid pump for flow simulation

query points to estimate the expected corresponding spatial
distribution of axial/rotational motions ξp through Gaussian
MixtureRegression (GMR) [14]. The conditional probability
of ξp with respect to ξt can be defined by:

βk = p(ξt |k)∑K
i=1 p(ξt |i)

(3)

The obtained proximal motions were then smoothed by a
further step of GMR to encode the essential features of the
data into longer time steps. A new sequence of time steps
is used to estimate the corresponding spatial components of
the GMM. As a result, the smoothed axial/rotational motion
trajectories were constructed from the training datasets in
the demonstration phantom, to the other two target phan-
toms, for the expert operator at each segmented phase of the
task.

The optimized proximal motion trajectories were vali-
dated by a customized robotic catheter driver to perform
cannulation of the innominate artery. The robotic driver was
previously reported by the authors in [9] (Fig. 4). This driver
consists of two servomotors which can push/pull and rotate
the catheter following the input trajectories. The catheter is
driven by a pair of friction wheels that are directly coupled
to one of the servomotors. The steering of the catheter is
achieved by rotating the frame that holds the catheter. The
robot is controlled by a PID controller. During the cannu-
lation task, the robotic driver automates the catheter motion
while an operator manipulates the guidewire for assistance.
The manipulation tasks with respect to the guidewire are (1)
the guidewire is stationary in procedural phase one; (2) the
guidewire is inserted through the aortic arch after procedural
phase one; (3) the guidewire is retracted after the proce-

dure phase two; (4) the guidewire is inserted when catheter
tip is accessed into the innominate artery during procedural
phase three. The guidewire is carefully manipulated, while
the catheter is stationary to avoid unwanted catheter tipmove-
ments.

Catheter motion models from demonstrations of different
experience levels were used to test the proposed frame-
work. Demonstrations were collected from novice operators
(n = 2, male, age=24 and 27) who have no prior knowledge
or experience in endovascular tasks. The novice opera-
tors learned the procedures through watching the videos
of expert’s demonstrations, as well as practicing the tasks
among the phantoms until repeatable skills were developed.
Four demonstrations over each phantomwere collected from
each novice operator.

A cross-validation was performed to find the success rate
of cannulation of the innominate artery by the proposed
framework. GMMs were generated from each phantom
across each experience level. The demonstrated tip motions
in each phantom were transferred into the other two phan-
toms. Robotic trajectories were estimated from each GMM
and optimized for the target anatomies. The robotic driver
was then used to execute the input trajectories and per-
forms cannulation in the corresponding phantom.The robotic
cannulation was carried out in each phantom under three
conditions: (1) dry condition; (2) continuous flow simula-
tion; and (3) pulsatile flow simulation. The continuous and
pulsatile flow simulation conditions were achieved by using
a hybrid pump (FAIN-Biomedical, Japan). The proposed
robotic setup is shown inFig. 4.A cannulationwas counted as
successful if the final catheter tip position was within± 2mm
of the destination position (as shown in Fig. 3). Sixty-four
robotic cannulations were performed in the expert group, and
108 were performed in the novice group (six times for each
phantom under each flow environment)

Catheterization quality evaluation The quality of catheter
tip motions by the proposed robotic approach is assessed and
compared against demonstrated catheter tip motions by the
expert operator. In this study, the demonstration anatomy is
the healthy arch (Phantom A), whereas the target anatomies
are diseased phantoms (Phantom B and C). Six robotic can-
nulationswere performed in each phantom, and tip kinematic
metricswere calculated from the catheter tip trajectories. The
metrics are: mean/maximum speed and acceleration, stan-
dard deviations of the speed, and total catheter path length
(corresponding to the back and forth movements). All met-
rics over all phases were assessed using the nonparametric
Wilcoxon rank-sum significance test (a value of P < 0.05
was considered statistically significant). All data analyses
were performed in MATLAB. Based on these metrics, the
performance of the robotic catheterization was compared
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Fig. 5 Training data from the demonstrations (red lines) and learned GMMs (colored ellipsoids) of catheter proximal motion (left) and tip motion
(right)

with humandemonstrations in the samevascularmodel under
dry conditions.

The contact force sensing platform developed by the
authors [17] was used in this paper to measure the contact
forces between the endovascular instruments and the vascular
phantom. PhantomAwasmounted on a plate thatwasfixed to
a six-DoF force/torque (F/T ) sensor (Mini40, ATI Industrial
Automation, Inc., USA). Average root-mean-square (RMS)

force modulus was calculated from the 3D forces measured
by the F/T sensor. Proximalmotion trajectories for Phantom
A were estimated from demonstrations in Phantom B and C
using the proposed trajectory generator. Those trajectories
were then executed by the robot under dry condition, and
the contact forces were recorded (twelve cannulations). The
contact forces were then compared with that from manual
catheterization, which was performed by four expert oper-
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Table 1 Success rate of robotic
cannulation within different
experience levels ,vascular
models, and experimental
conditions

Dry condition (%) Continuous flow (%) Pulsatile flow (%)

CA AR CA AR CA AR

Expert model

Phantom A 100 100 100 100 100 66.7

Phantom B 100 100 100 83.3 83.3 50

Phantom C 100 100 100 100 100 50

Novice model A

Phantom A 100 100 100 100 66.7 33.3

Phantom B 100 83.3 100 100 50 16.7

Phantom C 100 100 100 83.3 66.7 50

Novice model B

Phantom A 100 100 100 100 50 50

Phantom B 100 83.3 83.3 66.7 33.3 16.7

Phantom C 100 100 100 83.3 66.7 50

“CA” is the short form for “cannulation” which represents the rate of successful cannulation to the target
artery without considering the accuracy of reaching the target. An example is shown in Fig. 6 (bottom right).
“AR” is the short form for “Arrival” which represents the success rate of cannulation considering the precision
of the final catheter tip positions

ators in the same vascular model (three cannulations per
expert surgeon). The expert demonstrations were originally
recorded for previous works [17].Mean andmaximum force,
standard deviations of the force and force impact over time
were calculated and used as quality metrics. All metrics were
assessed using the nonparametricWilcoxon rank-sum signif-
icance test.

Experimental results and discussion

Catheter motionmodeling

Figure 5 shows the GMMs of both axial/rotational motion
trajectories and catheter tip motion trajectories in procedural
phase one (traveling through descending aorta). The col-
ored ellipsoids represent the GMM components, which are
matched between the proximal and tip motions.

Catheter motion transformation

For the validation of the catheter motion transformation, 36
simulated tip trajectories were generated from the expert
group (12 from each phantom) and 48 simulated tip tra-
jectories were generated from the novice group (8 from
each phantom). 86.1% (31/36) of the trajectories in the
expert group were classified as accurate. 91.6% (44/48)
trajectories from the novice dataset were classified as accu-
rate. Results show that the majority of the demonstrated
trajectories can be mapped to different anatomical set-
tings.

Experiments with the robotic platform

Table 1 shows the success rates of the catheterization task
by the proposed robotic platform under three experimental
conditions. The high success rates under dry and continuous
flow conditions suggest that the proposed framework is able
to adapt to anatomical variability across type I aortic arch
models. This method can also be used to learn skills from
operatorswith different experience levels. For the failed cases
under continuous flow, the catheter reached beyond the target
due to reduced friction caused by water. Examples of failed
cases are shown in Fig. 6 (bottom right). However, under the
pulsatile flow condition, many cannulation attempts failed
because of the changes in the shape of the vascular phantom.
An example is shown in Fig. 6 (top right); the catheter tip
was stuck in the aortic arch. Future work to address dynamic
movements of the phantom is briefly reported in conclusion.

Table 2 shows the result of the nonparametric test, with
median values for statistically significant differences (P <

0.05) between themanual approach and the proposed robotic
approach. Compared to manual catheterization, the robot
performed the catheterization at a lower speed and accelera-
tion in the two target phantoms. In both cases, the standard
deviations of the speed are significantly lower, which sug-
gest more continuous and controlled catheter motions. The
robotic approaches in Phantom B can achieve a shorter path
length compared to the manual approach. These results sug-
gest reduced back and forthmovements of the catheter tip and
also a reduced number of contact between the catheter and
the vessel wall. Potential clinical advantages include fewer
chances of tissue perforation and vessel dissection, especially
in Phantom B where weakened vessel walls are presented.
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Fig. 6 Catheter paths (left) and tip displacements (middle) obtained by
the proposed robotic approach and the manual approach within differ-
ent aortic arch models (Phantom B and C). Colors in the displacement

graph represent segmented phases of the task. Graphs on the right show
two failed cases in Phantom A under pulsatile flow simulation

Table 2 Median values for
statistically significant
differences (P < 0.05) between
robot-assisted learned
procedures versus
corresponding expert manual
demonstrating data within
different anatomies

Expert Aneurysm model Stenosis model

Manual Robot Manual Robot

Mean speed (mm/s) 6.75 2.78 4.16 2.17

Max speed (mm/s) 356.3 124.7 255.0 177.5

STDEV speed (mm/s) 20.7 4.56 23.4 7.01

Mean acceleration (mm/s2) 226.1 104.8 139.2 77.4

Max acceleration (mm/s2) 1.15 × 103 279.6 801.8 527.3

Path length (mm) 360.5 281.2 – –

Figure 6 depicts examples of the catheter paths (left)
and tip displacements (middle) of the robotic and manual
approaches across different phantoms. Robotic trajectories
were generated from the demonstrations in Phantom A and
were executed in Phantoms B and C. The robotic approach
achieved smoother tip displacements than that of the manual
approach. Steeper displacements in the first procedural phase
and overall shorter duration of the procedure are observed in
the human demonstrations.

Figure 7 shows the differences between manual and
robotic approaches in terms of forces measured over time.
The majority of the time, contact forces are lower with the

proposed robotic platform. There is also less perturbation of
forces over time. Reduced contact forces could contribute to
lower risk of vessel perforation and dissection. Themetrics in
Table 3 providemore insight into the forces that were applied
to the vascular model. Compared tomanual approaches, both
mean and maximum forces are significantly lower during
robot-assisted catheterization. The standard deviations of the
forces are significantly lower which suggest more steady and
repeatable catheter motions. However, the force impact over
time is higher with roboticmanipulation since the procedures
lasted longer.
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Fig. 7 A comparison of contact
forces exerted by the expert
(orange color) operator and the
robot (blue color) for
cannulation of the innominate
artery in Phantom A

Table 3 Median values for statistically significant differences (P <

0.05) between contact forces exerted on the vasculature from robot-
assisted procedures versus expert manual procedure in Phantom A

Manual Robotic

Mean force (N) 0.225 0.150

Maximum force (N) 1.29 0.555

STDEV force (N) 0.309 0.0907

Force impact area (Ns) 8.09 16.0

Conclusion and future work

This paper proposes an improved robotic platform for semi-
autonomous endovascular catheterization, using non-rigid
registration to find a warping function between anatomical
landmarks that canmap demonstrated catheter tip trajectories
into different anatomical settings. Underlying motion pat-
terns from catheter proximal motions and tip motions were
extracted and encoded by statistical modeling. Transferred
tip trajectories and the learned models were used as a tra-
jectory generator to optimize trajectories for subject-specific
anatomies. Experiments show high success rates of a cannu-
lation task by using the proposed trajectory generator and the
robotic catheter driver on different aortic arch models. The
quality of the robotic catheterization was assessed by com-
paring performance metrics derived from catheter motions
to that of the manual approach. Smoother, more continu-
ous and shorter path lengths were observed from the results,
which indicate safer and more controlled catheter motions.
Moreover, the proposed robotic approach is compared to the
manual techniques by measuring contact forces exerted on
the vasculature by the catheter. The robot achieved less mean
andmaximum forces than themanual approach over time and

significantly smoother force patterns. The proposed methods
show robust performance over three characteristic type I aor-
tic archmodels. Future improvements of the robotic platform
include applying the proposed methods into more types of
arch models as well as different vasculature, and incorporat-
ing dynamic shape instantiation into the proposed trajectory
generator to achieve real-time trajectory optimization and
adapt dynamic movements of the aorta. Moreover, integra-
tion of physiological motion simulation in the validation
setups could improve the realism. The learning of catheter
tip motion and proximal motion also provides insights into
modeling control policies of standard catheters. The meth-
ods proposed in this paper can be further applied to other
endovascular instruments and different endovascular proce-
dures.
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