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Abstract. Deep convolutional neural networks (DCNN) are currently
ubiquitous in medical imaging. While their versatility and high quality
results for common image analysis tasks including segmentation, local-
isation and prediction is astonishing, the large representational power
comes at the cost of highly demanding computational effort. This limits
their practical applications for image guided interventions and diagnostic
(point-of-care) support using mobile devices without graphics processing
units (GPU). We propose a new scheme that approximates both train-
able weights and neural activations in deep networks by ternary values
and tackles the open question of backpropagation when dealing with non-
differentiable functions. Our solution enables the removal of the expen-
sive floating-point matrix multiplications throughout any convolutional
neural network and replaces them by energy and time preserving binary
operators and population counts. Our approach, which is demonstrated
using a fully-convolutional network (FCN) for CT pancreas segmentation
leads to more than 10-fold reduced memory requirements and we provide
a concept for sub-second inference without GPUs. Our ternary approx-
imation obtains high accuracies (without any post-processing) with a
Dice overlap of 71.0% that are statistically equivalent to using networks
with high-precision weights and activations. We further demonstrate the
significant improvements reached in comparison to binary quantisation
and without our proposed ternary hyperbolic tangent continuation. We
present a key enabling technique for highly efficient DCNN inference
without GPUs that will help to bring the advances of deep learning to
practical clinical applications. It has also great promise for improving
accuracies in large-scale medical data retrieval.

1 Introduction

Deep convolutional neural networks (CNNs) have been shown to substantially
improve common image analysis tasks in computer vision and (bio-)medical
imaging. They have in particular advanced research in automatic segmentation
and image classification. Dense prediction based on fully-convolutional network
(FCN) architectures [19] enables very accurate voxel-wise segmentation by a
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single forward pass of the input image through a trained CNN architecture [6].
However, FCNs also come with tremendous demand for memory and compu-
tational resources that can rarely be satisfied in clinical scenarios in particular
when envisioning a mobile application of computer-assisted diagnosis and inter-
ventions. Furthermore, the translation of deep learning into interactive clinical
workflows will require processing times of few seconds, which up-to date were
only achievable using power-demanding GPUs. Surprisingly little research has
been undertaken in deep learning for medical image analysis that attempts to
limit model complexity. In this work, we address these challenges and present
a new technique to advance state-of-the-art CNN and FCN approaches by in-
troducing the TernaryNet — a versatile end-to-end trainable deep learning ar-
chitecture that drastically reduces computational and memory demand for in-
ference. We achieve this goal by replacing floating point matrix multiplications
with ternary convolutions (based on sparse binary kernels), with both activa-
tions and weights restricted to values of {—1,0,+1}. They can be calculated
using a masked Hamming distance, a XOR / XNOR operation followed by a
popcount, and reduce computational demand by up to a factor of 16. Our ap-
proach is not merely motivated by gains in computational performance, but also
to explore the theoretical advantages of explicit sparsity promotion to reduce the
risk of overfitting (as detailed in the following subsection) and learn more plausi-
ble neural network models. Our work extends recent approaches from computer
vision that relied on binary convolutions [23], ternary weight networks [17], hash-
ing by continuation [2] and our initial work on sparse binary convolutions [10].
The presented approach is to the best of our knowledge the first to use binary
convolutions for semantic segmentation and the very first to propose ternary
convolutions (and not only ternary weights since activations are also restricted)
based on masked Hamming distances.

The TernaryNet can be employed for any given image analysis task, e.g.
landmark regression or image-level classification, but we chose to demonstrate its
applicability to medical imaging for the automatic voxel-accurate segmentation
of the pancreas in CT scans, which is a particularly demanding task. Pancreas
segmentation is very important for computer assisted diagnosis of inflammation
(pancreatitis) or cancer and furthermore to provide image-based navigational
guidance for interventions, including endoscopy [6]. In the following, we will
motivate the use of sparse binary kernels in deep convolutional networks and
discuss related work for the use of quantisation in image analysis in particular
in deep networks. Section [2| contains the detailed explanation of ternary quan-
tisation and convolutions. Starting with a short discussion of current work on
CT pancreas segmentation, we describe our experimental setup in Section [3] and
compare different strategies and choices for model complexity reduction. We dis-
cuss our results, potentials for further research and future implications of our
novel ternary convolution concept in Section [f] and end with some concluding
remarks.

Motivation for sparse binary kernels: Convolutional neuronal networks ex-
cel in image recognition tasks by mimicking the visual cortex of mammals. The



TernaryNet: Faster Deep Model Inference w/o GPUs for 3D Segmentation 3

FEEPEAEN VMARSERNIE
EFESNSSAEVESRI=5SA
ElEEENREE R SERRW
HESESAEE SVERGAE S
SENERNRODEEN SEENAA=EE
o N DN B OO RN G AN PR OB OB AR
SPRANENEE NORESNEE
DEEENEENTNeRE S

E

i

Fig. 1. Left: Visual example of learned synthetic receptive fields (reproducing the re-
sults of [16]) using sparse coding techniques. Right: Ternarisation of weights demon-
strates the low approximation error for these naturally inspired sparse filters.

visual information is detected by photoreceptor cells and transmitted and pro-
cessed using multiple layers of neurons interconnected by synapses. Computa-
tional models have the capacity to replicate these mechanisms and can further-
more represent neural activations up to extremely high numerical precision (up
to 8 decimal points). However, in nature the simple structure of neural cells
and environmental influences severely limit the accuracy of subtle changes in
activation and in addition the need to conserve energy may lead to a sparse
as possible use of neural activity. Ohlshausen & Field [22] and Lee et al. [16]
therefore established the idea of sparse coding for pattern recognition and neu-
ral networks. Those works demonstrate that powerful convolutional filters can
be learned using few non-zero values by means of sparsity inducing L1 norms
and a feature sign searching algorithm. Furthermore, we observe that the non-
zero elements of these synthetic models of V1 cells tend to be close to values
+1 and -1. Therefore, a ternary approximation of weights leads to only minor
degradation of representational power (see Fig. .

Related work: Due to their computational efficiency binary codes and their
comparison using the Hamming distance (which counts the number of dissimilar
bits in a long binary vector) are becoming increasingly popular for demanding
image analysis tasks. They have been employed for hashing based large-scale
image retrieval [BI33], nearest-neighbour based segmentation [7] and image reg-
istration [8]. In computer vision binary descriptors are frequently used for real-
time applications, e.g. tracking using BRIEF features [I]. There are, however,
also cases where binarisation led to inadequate loss in representation quality as
e.g. reported for lung nodule classification in [5].

In our recent prior work [10], we proposed the use of sparse binary kernels
with very large receptive fields inspired by BRIEF features and dilated con-
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volutions [28/32] that enabled highly accurate segmentations without complex
network architectures. Similarly and concurrently [I4] proposed local binary con-
volutions that are derived from local binary patterns. A key limitation of these
works is, however, that their design does not allow us to automatically train
non-zero elements within binary kernels. Instead, they have to be chosen once
at random (with a similar manual design as proposed in [I]). We also did not
realise binary or ternary activations thus the use of efficient computations with-
out floating point arithmetic was not possible. An alternative solution that has
recently been proposed is the use of trained ternary filter weights [T7J35]. In
particular ternary weight networks [I7] use a very simple, yet powerful, ap-
proximation and learning strategy based on the mild assumption of Gaussian
statistics. They generalise the earlier ideas of [4I23] for learning binary weights
and clearly demonstrate that ternarisation drastically reduces the accuracy gap
to high precision weights. Another related approach by Liu et al. [I8] employs
decomposition methods for sparsification of convolution filters and proposes a
new implementation for fast sparse matrix multiplication.

While weight quantisation has quickly matured, another important aspect
that has so far been only insufficiently addressed is the quantisation or sparsifi-
cation of activations. Setting approximately half of the activations to zero using
a rectifying linear unit (ReLU) is common practice in deep learning. Yet more
drastic quantisation e.g. using the sign function

sgn(z) = (x>0—-1)A(x<0—-1) (1)

as non-linear activation leads to strong artefacts during forward passes and no
gradient for backpropagation. Courbariaux et al. [4] therefore proposes an adhoc
solution that employs a rectangle (boxcar) function

Osgn [0z~ (lz| <1—=1A(jz| >1<0—0) (2)

as a replacement, which was later also used in [23]. The downside of this ap-
proach is the fact that since two different functions are used during forward and
backward propagation the training behaviour is ill-defined and potentially unsta-
ble. Cao et al. [2] propose a more justifiable approach based on the continuation
of the hyperbolic tangent, which approaches the sign function with increasing
slope § in its limit:

lim tanh(Bx) = sgn(x) (3)

B—o0

They prove the convergence of this optimisation when employing a sequence
of increasing values of 8 during training. They limit the use of this function
to the final layer within a framework for supervised hashing. In our work, we
extend this concept to a ternary hyperbolic tangent as explained in detail in the
following section and apply this function as nonlinearity throughout — for every
activation — in our deep network models.
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2 Method

We aim to automatically segment the pancreas in regions of interest extracted
from CT volumes. For this purpose use a fully-convolutional U-Net architecture
[24] is chosen. However, a V-Net [20] or multi-path network will most likely lead
to similarly good segmentations and would also support our findings. The U-Net
model can contain several million free parameters rendering it computationally
demanding and prone to overfitting. Furthermore, as common for FCN architec-
tures an efficient inference requires an unexpectedly large amount of memory due
to the use of the im2col operations. They are necessary to perform multi-channel
convolutions of all elements in the feature maps in parallel using matrix multi-
plications between activations of preceding layers with a current filter bank [13].
We propose a ternary quantisation of weights and activations that is generic and
therefore applicable to reduce complexity for any (convolutional) neural network
architecture including FCNs.

Ternary weights: In order to limit the memory demand, reduce model com-
plexity and enable inference of CNNs in practical clinical environments, it is
desirable to reduce the precision of both activations and weights. Following the
recent work of Li et al. [17], we aim to find the best approximation to the filter
weights W ~ oW where o describes a (floating point) scaling parameter and
W consists of only ternary values {—1,0,1}. It is shown in [I7] that the minimal
quantisation error can be obtained by calculating:

W, =40 if[w|<A WithA:ﬂZ|Wi| (4)

n -
—1 else i=1
and a = i S Wil [Wi| with na = 32, [W;|. When employing quantised weights
during the training of a network using stochastic gradient descent with mini-
batches (i.e. in virtually any case of deep learning) it is strongly advisable [4]
to accumulate gradient updates with full-precision (while using W for both
forward and backward passes), otherwise they would usually not exceed the
threshold (according to Eq. [4) necessary to flip individual bits. This simple and
straightforward ternary weight approximation already yields excellent accuracies
for classification tasks (only 3.6% lower top-1 scores for ImageNet compared to
full-precision networks [17]).

Ternary activations: The use of ternary weight approximations alone, how-
ever, cannot reduce the huge memory and computational demand required to
store and process intermediate feature maps, since the resulting activations will
still be full precision. The key contribution of our work is therefore the intro-
duction of a new activation function that enables an accurate ternarisation of
intermediate features in a neural network, which we coin ternary hyperbolic
tangent. This proposed function ternTanh(x) combines two hyperbolic tangents
to form plateaus around zero and beyond +1 and -1:

ternTanh(z) = %tanh(26w -8)— %tanh(—2ﬁx -0) (5)
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In contrast to a sign function the ternary hyberbolic tangent is fully differentiable
and can therefore be used without custom changes to the learning procedure of
deep networks. The parameter 8 controls the slope and can be varied throughout
the process of learning. In earlier iterations it is beneficial to use smaller values
for B to enable sufficient gradient flow and avoid “dying” neurons. Eventually,
we aim for a discrete step function tern(z) that can be defined as:

+1 ifx>05
tern(z) = < 0 if |[2| <0.5 (6)
—1 else

Similar as above for the binary case covered in [2] the following continuation
holds true (see Fig. [2] for visual example):

lim ternTanh(fBz) = tern(z) (7
B—o0
1}t |—ternTanh 5=3 3
—temTanh (=6 [
tern (Eq. 6) 25

05)
2
0 f 15
05} 1
J 05
-

1.5 -1 -0.5 0 0.5 1 1.5 1 0 1

Fig. 2. Visualisation of proposed ternary hyperbolic tangent as defined in Eq. [f]showing
varying [ values for increasing steepness of slopes. The analytical derivative of our new
nonlinearity is shown for 8 = 3 on the right.

Ternary convolutions and complexity analysis: In combining both ternary
weights and ternary activations, we can realise important avoidance of time-
consuming floating point multiplications, which were at the core of classical
deep learning architectures. In [4I23] the idea of replacing full precision inner
products of an input tensor I and a filter bank W by boolean operations and bit
counting (population count) was explored for binary valued operands, i.e. I, W €
{—1,41}¢, where ¢ denotes the size of a kernel (including both spatial extend and
number of features). It is straightforward to show that a matrix multiplication
and its inner-products can be efficiently calculated in the Hamming space:

LW; =c— 25{]:1' D WJ} (8)
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where @ defines an exclusive OR (XOR) operator and =" a bit-count over the ¢
bits in the rows of I and W. Modern CPUs, FPGAs or embedded SoCs all con-
tain instructions for efficiently calculating population counts of 64-bit strings in
few cycles (using AVX extensions Intel CPUs achieve a throughput of 0.5 cycles
[21]). This means that each bit-count replaces 64 floating point multiplications
and additions. Even when considering the highly optimised fused multiply ad-
dition (FMA) instructions on 256 bit wide registers (mm256-fmadd-ps), which
are employed on modern Intel CPUs and that can process 8 packed FMAs in
parallel in 0.5 cycles, we can gain a speed up of a factor of 8. When considering
equal power consumption (floating point operations require more complex logic)
the improvements are even much higher.

Since previous work on binary quantisation of deep learning architectures
[4123] has led to severely reduced accuracy of 12-20% for image classification
tasks, we aim to extend the concept of bit-counting as replacement for matrix
multiplications to ternary valued networks with I, W € {—1,0,4+1}¢. As shown
in Fig. [3] we can store ternary tensors using 2 bits per entry that encode the
sign and value respectively. We denote these two tensors as I*,I¥ € {0,1}¢ and
We W € {0, 1}¢. The inner-product calculation can then be realised using two
bit-counts in Hamming space:

LW; = Z{(I; ® W5)&(I7 + WJ)} = Z{(I; ® Wj)&(I7 + W7)} (9)

Here, & defines an AND operator, + the boolean OR and A @ B the negated
XOR. A more intuitive interpretation is that all operations involving a zero value
are excluded and the first part of the equation calculates all positives elements
of a dot product, i.e. +1-+1 and —1 - —1, while the second part subtracts the
number of times an opposing sign multiplication occurs. The complete concept
of an individual building block for ternary convolutions in deep networks is show
in Fig. |3l In practice further speed-ups (halving the number of bit-counts) are
possible when training the weight quantisation to follow a specified degree of
sparsity, e.g. by replacing the rule derived in Eq.[4 and specify A so that in each
kernel exactly 50% of entries are zero.

In summary, each module in our proposed TernaryINet architecture com-
prises a ternary approximation of filter weights together with a ternarisation of
activations to enable low-power, high-speed ternary convolutions without float-
ing point operations. During training both weight updates for mini-batch opti-
misation and the activations using the new ternary hyperbolic tangent tern are
kept at full precision to enable gradient flow and precise learning. By extending
the strategy of [2] to ternary activations and applying a continuously increasing
slope § during training, the network learns to cope with sparse and quantised
activations, which is vital in order to avoid diverging objectives between training
and testing. Batch-normalisation layers [I2] are inserted between ternary convo-
lutions and activations to accelerate the learning process and keep a zero mean of
feature responses as well as an approximately unit normal distribution to ensure
the nonlinearity is not easily saturated. A trained model can be stored using
only 2 bits per weight and one (full-precision) scalar weighting value per feature
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Fig. 3. Visual example for the computation of ternary convolutions without floating
point operations. Ternary values are encoded by sign and value, i.e. +1 — (B0), -1
— (0,0) and 0 — (O,). The approximation for a ternary filter bank provides scaling
parameters « see below Eq.[d] Ternary convolutions can be computed by masked XOR
and XNOR operators followed by a bit-count according to Eq.[0] The output is batch
normalised and passed on to the nonlinearity visualised in Fig.

channel — reducing the required memory by more than an order of magnitude.
During model inference on unseen data, we employ a hard quantisation of Eq.
and thereby enable the use of Hamming distances for ternary convolutions. It is
important to note that all common architectural design choices of modern deep
networks, such as skip connections [24], dilated kernels [T0J32] or dense feature
concatenation [6I11] are useable with ternary convolutions.

3 Experiments

To demonstrate the usefulness of TernaryNets for highly efficient medical im-
age analysis, we explore the dense prediction (semantic segmentation) of the pan-
creas in CT. The extension of our model to multi-organ labelling is straightfor-
ward. Providing image-guidance for interventional tasks relies on fast inference
executed on common clinical workstations or even mobile devices. We therefore
also analyse in detail the computational operations and memory requirements
in our experiments. The highly variable shape and a relatively poor contrast of
the pancreas as well as confusable neighbouring abdominal anatomies make this
segmentation very difficult. Therefore, networks with large receptive fields are
required to robustly capture sufficient regional context, while at the same time
an automatic method should delineate local objects boundaries accurately and
avoid over-segmentation of similar neighbouring structures within the field-of-
view. Our experiments are based on the public NIH dataset that was described
in [25]. It comprises 82 high-resolution CT scans along with accurate manual
segmentations for training and validation.
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Comparison to State-of-the-Art: Several approaches have been evaluated in
the last few years on the NIH dataset and a similar corpus of abdominal CT
scans (the BCV challenge data described in [29]). Accuracies for pancreas seg-
mentation without CNNs are often relatively low, e.g. overlap scores of 40% and
49% have been reported for two different multi-atlas techniques in [30]. Employ-
ing discrete registration within multi-atlas label fusion [9] improved accuracies
for pancreas segmentation to 74% Dice, ranking first at the MICCAI 2015 BCV
challenge. The approach of [I5] reached 60% overlap within the same challenge
by combing registration based localisation with deep CNNs. Roth et al. achieved
a Dice score of 71% [25] on the NIH dataset when combining supervoxel based
deep region regression with CNN patch classification and could further improve
their accuracy to 78% [26] using holistically nested networks together with ran-
dom forest classifiers. Very recently, Zhou et al. [34] achieved an astonishing
performance of 82% on the NIH data by training an iterative sequence of mul-
tiple (coarse-to-fine) deep CNNs. The use of densely connected layers within a
V-Net architecture (Dense V-Net [6]) resulted in a Dice overlap of 66% (on both
NTH and BCV datasets), which is also the only of the mentioned deep learning
approaches that did not rely on a combination of classifiers or registration. In
our own previous work [10] we reached 65% Dice for the BCV dataset using
(untrained) sparse binary convolutions that enabled huge receptive fields but no
binary (or ternary) convolutions.

Baseline model: Our aim is not necessarily to surpass current state-of-the-art
accuracies, but to demonstrate and analyise the effects of network model quan-
tisation. We therefore employ a four-level fully-convolutional U-Net architecture
[24] as an exemplary baseline. To fairly assess the influence of binarisation and
ternarisation, we employ the same number of channels and convolution filters
for all compared models and hyperbolic tangents (except for the final prediction
layer) as baseline activation function. Tablelists the details of the chosen archi-
tecture, including the number of floating point operations (FMAs) required per
layer. The resulting receptive field of this network is 36 voxels. Using floating-
point precision, the network requires 2.6 million weights and thus 10.6 MBytes
of storage for the model weights. During training the model requires more than
5 GBytes of memory (using a mini-batch size of 10), for inference this can be
reduced to approximately 1 GByte.

Compared models: We have analysed in total seven variants of our baseline
network to explore the effect of sparsity and quantisation to both activations and
filter weights. Starting from the same baseline model, we define our TernaryNet
by approximating weights using the ternary quantisation of Eq. [4 as proposed
in [I7]. During training we varied the value of 5 in Eq. [7] linearly (and evenly
with epochs) from 3.0 to 8.0 following the principal of continuation of [2]. The
variant no continuation uses a fixed g = 3 for all epochs. To quantify whether our
approach succesfully reduces quantisation loss, we also compare a variant without
quantisation that does not realise ternary convolutions. For binary convolutional
networks (termed XNORnet [23], see Eq. [§), we explore the adhoc gradient
approximation according to the seminal work in [4]. As alternative, we adopt
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Table 1. Description of baseline U-Net model. Number of million fused multiply add
(floating point operations) is given as MFlops. To reduce the number of trainable pa-
rameters the convolutions in the lowest resolution level are 1x 1. Outgoing and incoming
skip connections are noted in the last column.

Layer ‘ (Out)-Size Kernel # Channels‘MFlops Skip
Input 236x172x15

#1 Conv3D 234x170 3x3x15 32 172

#2 Conv2D 232x168 3x3 64 718 —#13
#3 Conv2D | 228x164 3x3 64 345
AvgPool2D 11482 2x2

#4 Conv2D 112x80 3x3 128 661 —#11
#5 Conv2D 108x76 3x3 128 303
AvgPool2D 54 %38 2x2

#6 Conv2D 52x36 3x3 256 552  —#9
#7 Conv2D 52x36 1x1 256 31
AvgPool2D 26x18 2x2

#8 Conv2D 26x18 1x1 256 31
Upsample2D 52x 38 2x2

#9 Conv2D 50x 34 3x3 256 2005 #6 —
#10 Conv2D 48x32 3x3 128 453
Upsample2D 96 x 64 2x2

#11 Conv2D 94 %62 3x3 128 1719 #4 —
#12 Conv2D|  92x60 3x3 64 407
Upsample2D | 184x118 2x2

#13 Conv2D| 180x116 3x3 64 1583 #2 —
#14 Conv2D| 176x110 3x3 64 770
Prediction 176x110 3x3 2 2
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the continuation (see Eq.|3) for a classical tanh nonlinearity. Finally, the full-
precision network is compared with ReLLU activations for completeness.

Data processing: We resampled the original scans of the NIH dataset that
had axial dimensions of 512x512 and 181466 slices with thicknesses between
0.5mm —1.0mm to isotropic voxel sizes of 1.0mm?®. We then performed a region-
of interest cropping with bounding boxes of dimensions 194x122x138 around
the pancreas, yielding an approximate density of 2% for organ voxels (and 98%
background). There exist several accurate algorithms that automatically predict
bounding boxes and/or organ locations, e.g.[27I31], which could be employed
for this task so it was considered out of scope for our study. Subsequently, we
applied a zero mean unit variance transformation on the cropped CT volumes.
Following related work on pancreas segmentation using CNNs [2534], we employ
only 2D convolutions, but provide a stack of several neighbouring slices (15 in our
experiments) to each network. The output for each stack will be a probabilistic
map of foreground and background probabilities for the given central slice. No
form of post-processing is employed, which could potentially further increase
accuracy, but also influences the assessment of differences across methods.

Training and implementation details: We use a mini-batch size of 10 and
Adam with an initial learning rate of 0.0025. Each network is trained for 40
epochs with 150 iterations (1500 3D input stacks) each. Since, we encountered
a huge class imbalance, we use a weighted cross-entropy loss with 0.5 for back-
ground and 2.5 for organ pixels. We trained 5 separated folds of training and
validation splits using 65-66 scans for training and 16-17 for testing. The deriva-
tives of our ternary activation and the equivalent binary tanh(z) can be found
analytically (using automatic differentiation), for the adhoc approximation of
binary activations in Eq. [2] we implemented a custom forward and backward
pass. When approximating filter kernels, we keep a copy of the full precision
weights, perform the quantisation before forward pass and restore the original
values after the backward pass and before calling the optimiser that performs a
gradient step. To enable a reproduction of our results and further research, our
pytorch implementation and pre-trained models will be made publicly available
after submission at https://github.com/mattiaspaul/TernaryNet.

4 Results and Discussion

The performance of the seven compared models is evaluated quantitatively in
terms of Dice overlap between automatic prediction (without further post-processing)
and manual annotation. Average Dice values (and standard deviations) are com-
pared in Table [2] alongside with statistical significance tests and memory usage

for model parameters.

It can be seen that our proposed ternary convolutions perform on par with
full-precision networks reaching an average Dice of 71.0%. This demonstrate
the robustness and high accuracy of our proposed ternary quantisation scheme.
The results are also comparable to a number of recent deep learning approaches
that all relied on full-precision and thus much larger and more complex models.
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Fig. 4. Top row: A visual comparison of case # 12 of the NIH demonstrates small but
significant advantages of the ternary quantisation (middle) over the better performing
adhoc binary activation and quantisation, which over-segments a neighbouring struc-
ture (left). Our approach better matches the manual segmentation (right). Bottom
row: 3D visualisation of our segmentation shows a very smooth surface (left). Ranked
(sorted) Dice score compared across methods demonstrate that the full-precision model
is not significantly better than our heavily quantised TernaryNet. Both Binary XNOR-
net variants perform inferior.
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When replacing the tanh(z) nonlinearity with a ReLU in the full-precision model
its accuracy can be further improved by 3.8%. However, the presumptions that
symmetric activations are nowadays unsuitable to reach high accuracy has been
refuted. Possibly, because the U-Net and similar architectures enable a very good
backwards flow of gradients through their skip connections. The performance of
binary quantisation is significantly lower than our approach. This is in particular
evident for the variant that uses an analytically differentiable activation. We as-
sert that this underlines the importance of sparse activations, which can contain
a larger number of zero values — a key feature of our new nonlinearity. Sparse
intermediate feature maps enable the network to adapt certain filter banks to
specific subproblems while being unaffected by pertubations of unrelated data.

Table 2. Dice overlap measures of pancreas for 82 CT scans (5-fold cross-validation).
Paired t-tests are performed for significance analysis against TernaryNet, where (-)
indicates that our method performed significantly better.

Architecture ‘Avg. Dice stddev  p-value ‘weight memory
Binary XNORnet

(continuation Eq. 48.4% +20.1 <0.001 ()| 0.33 MBytes
(adhoc gradients Eq. 66.9% +10.5  0.01(-) 0.33 MBytes
TernaryNet

(using 3 — oo in Eq. [5) 71.0% +9.5 * 0.66 MBytes
(without quantisation 71.8% +£10.7  0.60 (o) | 0.66 MBytes
(no continuation in training) 56.3% £19.3 <0.001 (-)| 0.66 MBytes
Full Precision U-Net 71.9% 10.2 0.54 (o) | 10.6 MBytes
ReLU instead of tanh 75.7% 9.0 0.001 (+) | 10.6 MBytes

Training one entire model (within 40 epochs) requires about 15 minutes on an
NVIDIA Titan Xp. Inference of the full precision network on a CPU takes about
80 seconds. When employing a customised OpenCL implementation for Ham-
ming distance calculation (used for ternary convolutions in Eq. @, we estimated
inference times of 5-7 seconds using a dual-core mobile CPU. This represents a
more than 10x speed-up through our contributions. Further speed-ups can be
gained by reducing the number of parameters in the expanding path and skip-
ping every other slice in a 3D volume (and interpolating in between) or adjusting
the ternary weight quantisation to increase sparsity and reduce the number of
population counts.

When analysing the sparsity of filter weights learned by our model across
epochs, shown in Fig. [f] one can see a tendency to an increase in zero values in
later layers and later epochs. In comparison to the number of trainable weights
in Table [1]it is notable that layers with increased sparsity at the end of training
also contain most free parameters. This indicates that the model automatically
avoids overfitting and sparsity acts as a regulariser. The importance of adapting
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the slope in our ternary hyperbolic tangent nonlinearity during training is clearly
shown in Fig. [f] where the average Dice is plotted across training epochs. Note,
that the evaluation on validation cases always employs ternary convolutions and
accordingly quantises activations using Eq. [6]

observed sparsity (fraction of 0) in ternary filters

0.48
£10 0.47
0.46
—TernaryNet (3—o0) H .
(without quantisation) 0.45
—(no continuation in training) H 0.44
| 0.43
. . . 40 0.42
2 4 6 8 10 12

10 20 30 40
training epochs depth of network layer

@
o

~
o
-

(o]
o

n
o

N
o

epoch during training
W
o

W
o

average Dice overlap pancreas
[4)]
o

N
o
o

Fig. 5. Left: By employing the continuation technique with increasing 8 values dur-
ing training epochs we can significantly improve the outcome of our trained networks.
The ternarised quantisation does thereby no longer affect segmentation quality mea-
sured in Dice overlap. Right: The observed sparsity (fraction of zero values) in the
trained ternary weights increases throughout the training process. This effect is more
pronounced for deeper layers with high parameter counts.

5 Conclusion

We have presented a pioneering approach for ternary convolutions in deep neural
networks that relies on both ternarised activations and filter weights. Our work
goes beyond previous efforts of binarisation that has often led to severe model
degradation. In our experiments, we demonstrated that the TernaryNet main-
tains the high segmentation quality of the corresponding full precision U-Net
(around 71% Dice for pancreas CT with further potential for improvements),
while realising 10x speed improvements and 15x lower memory requirements.
This is in particular important when executing model inference for image-guided
interventions on clinical or mobile computing hardware. A detailed guide to im-
plementation and best practices along with the generality of our approach will
help transfer the concept of ternary convolutions to other deep learning applica-
tions. We have seen a clear importance of designing a ternary activation that is
analytically differentiable based on the underlying hyperbolic tangent nonlinear-
ity as well as using a continuous adaption of its slope during training. This eases
the complex training process and results in a high sparsity that is desirable for
generalisation and supported by theoretical analysis in literature. When proven
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in other related fields of computer vision, we strongly believe that quantised net-
works will have an increasing impact and potentially lead to a wider adaptation
of its underlying computational blocks (population counts) in mobile processors.
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