
Eye Tracker Accuracy:
Quantitative Evaluation of the Invisible Eye Center Location

Stephan Wydera) and Philippe C. Cattinb)

Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland

(Dated: May 23, 2017)

Purpose. We present a new method to evaluate the accuracy of an eye tracker based
eye localization system. Measuring the accuracy of an eye tracker’s primary intention, the
estimated point of gaze, is usually done with volunteers and a set of fixation points used as
ground truth. However, verifying the accuracy of the location estimate of a volunteer’s eye
center in 3D space is not easily possible. This is because the eye center is an intangible point
hidden by the iris.
Methods. We evaluate the eye location accuracy by using an eye phantom instead of

eyes of volunteers. For this, we developed a testing stage with a realistic artificial eye and
a corresponding kinematic model, which we trained with µCT data. This enables us to
precisely evaluate the eye location estimate of an eye tracker.
Results. We show that the proposed testing stage with the corresponding kinematic

model is suitable for such a validation. Further, we evaluate a particular eye tracker based
navigation system and show that this system is able to successfully determine the eye center
with sub-millimeter accuracy.
Conclusions. We show the suitability of the evaluated eye tracker for eye interventions,

using the proposed testing stage and the corresponding kinematic model. The results further
enable specific enhancement of the navigation system to potentially get even better results.

I. INTRODUCTION

Eye tracking devices, also known as eye- or gaze track-
ers are used to monitor eye movement. An eye tracker
is usually used to determine a person’s point of gaze. In
market research, for instance, a wearable, video based
eye tracking system can be used to uncover which prod-
uct on which shelf is attracted by a test person. Cer-
tainly, there exist other constructions of eye trackers (e.g.
desktop or embedded devices) and many other eye track-
ing applications (e.g. in usability testing or in automo-
tive industry)1,2. Different physical principles might be
behind an eye tracker, depending on the application3.
Video based eye trackers are the most widely used de-
vices, because of their simplicity and the wide applica-
bility.

In recent research, eye trackers are also used in naviga-
tion systems for computer assisted eye interventions4–6.
In these cases, the eye tracker is used to estimate the
3D-location of the patient’s eye, that is the eye center
and orientation. We define the eye center as the center
of corneal curvature. This can be useful to align an eye
for an ophthalmic examination or treatment. Further-
more, the point of gaze, estimated by the eye tracker, is
automatically monitored to interrupt an examination or
treatment in case of sudden eye motion.

Using an eye tracker for medical interventions demands
high system accuracy. This may decide between success
or failure of an intervention because of the close proximity
of critical structures within the eye. For instance, an eye
localization accuracy below 1 mm is required, when an
eye tracker is used to target intraocular tumors.

The demand for accurate eye tracking systems also
raises the need for reliable accuracy measurement meth-
ods. Accuracy measurements are crucial for the develop-
ment of an eye tracking system and also for the perfor-
mance specification of the device.

Conventionally, eye tracker accuracy is evaluated with
volunteers, who have to focus on certain fixation points
located at well-known positions. The accuracy is then
given by the deviations between the true fixation point lo-
cations and the point of gaze estimates of the eye tracker.
As straightforward as this evaluation can be performed
on the one hand, as difficult it is to see what parts of the
system contribute to a certain error on the other hand.
Testing this way does not enable us validating the ac-
curacy of an intermediate product of the eye tracking
pipeline, as for instance the eye center location. Fur-
thermore, this validation method obviously depends on
the cooperation of the volunteers. Hence, measuring the
accuracy with an eye phantom seems to be the ideal com-
plement for a thorough eye tracker evaluation.

Already Via et al.4 used an eye phantom to asses the
accuracy of an eye tracking system. However, details
about the exact procedure remain partially unclear. Fur-
thermore, it is not clear how realistic their eye phantom
is. Also Świrski and Dodgson recognized the lack of a
comprehensive evaluation method to test and improve
the individual parts of an eye tracking system. They
propose completely synthetic eye data7 for accuracy and
precision evaluation of eye tracking algorithms.

Compared to Via et al.4, we build up our ground truth
data using µCT-measurements to get highly accurate ab-

ar
X

iv
:1

70
5.

07
58

9v
1

 [
cs

.H
C

]
 2

2
M

ay
 2

01
7

2

Eye tracker

Testing stage

Mirrors
Camera & Lens

Cornea
Center of corneal curvature
Eyeball

Eye model

Linear stages
Rotation stage
Goniometer

DOF Microstages

Figure 1: Eye tracker and testing stage (topdown view)

solute eye center locations. In contrast to Świrski and
Dodgson7, we do not only evaluate the algorithm, but
we validate the complete eye tracking system, includ-
ing the whole optical path and the external referencing
to a medical device. The evaluation of such an eye lo-
calization system involving eye tracker hardware and its
environment cannot be done with rendered eye images.
Neither can it be done with volunteer tests, because it is
not possible to accurately measure the 3D location of a
volunteers invisible eye center.

Accurate ground truth data is required for the accu-
racy evaluation of an eye localization system. We pro-
pose a procedure to fill this gap by providing accurate
3D-locations of the invisible and intangible eye center.

The basis is formed by a testing stage with four de-
grees of freedom (4 DOF), a mounted artificial glass eye,
and an attached, black and white checkerboard pattern
for external referencing. The testing stage enables us to
move the whole eye forth and back and sidewards (by two
linear stages). Additionally, the testing stage enables us
to rotate the eye around two axes (by a rotation stage and
a goniometer), in order to simulate an arbitrary line of
sight. We built the testing stage and trained the parame-
ters of its kinematic model with µCT-data (i.e. high pre-
cision 3D volumetric data) acquired of the testing stage
in several different configurations (i.e. eye positions and
orientations). The µCT-data provides us with accurate
information about the location and the geometry of the
eye and the checkerboard. Figure 1 illustrates the two
involved parts, the eye tracker we want to evaluate and
the proposed testing stage to accomplish the evaluation.

Having the testing stage ready and the kinematic
model trained, we position and orient the artificial eye in
known locations and compare this against the eye center
locations predicted by the eye tracker. The eye center lo-
cations are given by the centers of corneal curvature (i.e.
center of a cornea best fit sphere). The trained kinematic
model provides us with exactly the same point in a com-
mon coordinate system (CS), which is also accessible by
the eye tracker. This enables us to compare the eye lo-
cation estimates of the eye tracker with the ground truth
data, given by the testing stage model.

Eyeball

Cornea

Lens

Center of corneal curvature
and nodal point of the eye zc

Center of rotation ze

Geometrical axis

Visual axis

Fovea

Point of gaze

Figure 2: Typical eye model used by eye trackers

With the proposed testing stage, it is possible to quan-
titatively evaluate the performance of any 3D model
based eye tracker. Using this method, we show that a
particular eye tracking system6 estimates the eye center
location with sub-millimeter accuracy.

We describe in the following sections our proposed
method for the accuracy evaluation and the results
achieved when testing a particular eye tracker6.

II. METHODS

We propose a custom-built hardware testing stage and
an appropriate kinematic model with its calibration, to
evaluate the accuracy of the center location of the corneal
curvature, estimated by an eye tracker. This section con-
sists of three parts. First, we give an insight into a typical
eye tracking model based on 3D ray tracing. Second, we
present the testing stage hardware with its components.
The testing stage hardware enables us to position and ori-
ent the embedded artificial eye such that the eye tracker
can perform its intended measurements. The testing
stage hardware basically replaces the testing volunteer,
with the advantage of having the exact position of the eye
(i.e. ground truth). Third, we present the corresponding
testing stage model, which we parametrize, train and val-
idate with µCT data. The kinematic model enables us to
determine the exact glass eye position in every possible
testing stage configuration with sub-millimeter accuracy.

Consequently, this enables us to test an eye tracker
on the artificial eye prothesis with several different eye
positions and orientations. The 3D eye location estimate
of the eye tracker can then be compared to the ground
truth data of the testing stage model, which is configured
according the status of the testing stage.

II.A. Eye Tracker Model

The complexity of existing eye tracking models vary.
The eye is often modeled with two spheres. Figure 2 illus-
trates such a typical eye model. One sphere represents
the eyeball, its center consequently corresponds to the
rotation center of the eye. The second sphere, the sphere
cap respectively, represents the cornea. The center of

3

~x(CSlin2)~x(CSlin2)

~x(CSlin1)~x(CSlin1)

~x(CSgon)~x(CSgon)

(a) Top-down view

~x(CSrot)~x(CSrot)

CScbCScb

yyxx

(b) Bird’s-eye view

Figure 3: Testing stage with the glass eye, its holder
with the checkerboard and the microstages

the corneal curvature corresponds to the nodal point of
the eye, where the optical rays cross, before they hit the
retina8.

The two sphere centers define the geometrical axis of
the eye. Hence, the orientation of an eye in space can be
determined by the geometrical axis. The location of the
eye (i.e. eye center) is given by the center of the corneal
curvature, which lies on the mentioned, geometrical axis
and is an integral part of most of the 3D model based
eye trackers.

The fovea (point of sharpest vision) is located on the
retina (backside of the eyeball) but is not in line with
the geometrical axis. A point we focus on with our eye
gets imaged on the fovea. That is why also the visual
axis plays an important role in such a model. The visual
axis connects the fovea with the nodal point of the eye
and the point of gaze. The angle between visual axis and
geometrical axis has to be calibrated per patient.

The eye tracker5,6 which we test with the proposed
testing stage is based on the model of E. D. Guestrin
and M. Eizenman8.

II.B. Testing Stage Hardware

The testing stage we developed consists of a trans-
lation stage with two axes with parameters P1 and P2

(OptoSigma TADC-652WS25-M6), a goniometer stage
with parameter P3 (OptoSigma GOH-65A50-M6), and
a rotation stage with parameter P4 (OptoSigma KSW-
656-M6). The variables P1, P2, P3, and P4 represent the
values, which are set for the corresponding microstages.
The linear stages have a vernier scale included enabling
to measure with a precision of 10µm. The rotation stage
and goniometer also contain a vernier scale enabling us
to measure with a precision of angular minutes. To sim-
ulate the human eye, we use a handcrafted eye prosthe-
sis made from glass by the Swiss Institute For Artificial
Eyes, Lucerne, Switzerland. To interface the artificial eye
with the stages we designed a rigid and robust eye holder.
Since the eye prosthesis does a priori not have an exactly

Microstage parameters
P1, P2, P3, P4

Testing stage
hardware

Eye tracker

Testing stage model

zc, ze = f(θ, P1, P2, P3, P4)

Comparison

adjust microstages

feed model

measure

estimated z?c , z
?
e

true zc, ze

Figure 4: Concept of testing stage: Comparison of the
eye center location z?c estimated by the eye tracker with

the ground truth zc

known geometry, we made a 3D scan of it with a µCT
device (GE phoenix nanotom m). We segmented the sur-
face of the eye with Fiji, an image processing package9.
We afterwards used Blender, an open source 3D creation
suite (http://www.blender.org), to design a holder accu-
rately interfacing the eye with the stages. The holder ad-
ditionally contains a black and white checkerboard stuck
on its side. The checkerboard is printed with an off-the-
shelf laser printer, which contains toner visible in the
µCT. The stages are serially mounted and on top of
them is the eye holder, which was printed on a Stratasys
Fortus 250mc 3D printer. The testing stage is shown in
Figure 3.

II.C. Testing Stage Kinematic Model

The aim of the kinematic model is to determine the
exact center location of the corneal curvature zc for a
certain testing stage configuration (P1, P2, P3, P4) and to
transform the coordinates to a common coordinate sys-
tem.

The internal model parameters θ, that have to be
trained, basically consist of six right-handed coordinate
systems (CS): CSvol is the common CS for all µCT -
volumes, CSlin1, CSlin2, CSgon, and CSrot correspond to
their appropriate microstage and CScb is the checker-
board CS. CSvol can be seen as the CS for model input
data, whereas CScb is the CS for the output data. CScb

is accessible by the eye tracker and the testing stage. Ad-
ditionally, θ contains ẑc and ẑe, the center locations and
the radii of the cornea and the eyeball, yet unaffected by
P1, P2, P3, P4 (neutral position).

Figure 4 illustrates the role of the testing stage model
within our contribution.

The origins of the CSs and the corresponding orienta-
tions are defined based on the acquired µCT data. We

http://www.blender.org

4

adjust a few positions of each individual microstage and
acquire a µCT volume for each configuration. This en-
ables us to train the internal kinematic model parameters
θ.
µCT Data Acuisition. As seen in Tab. I, we ac-

quired 15 µCT-volumes, which help us to define the men-
tioned internal model parameters θ. Furthermore, we
used some µCT measurements to test the integrity of our
kinematic model. The table shows the number (identi-
fier) of the measurement (#), the state of the individual
microstages during a certain scan and the type of the
measurement (?).

Table I: µCT-data acquisition plan

Stages
P1 P2 P3 P4

linear 1 linear 2 gonio. rotation ?

1 0 mm 0 mm 0◦ 0◦ 1,3

2 −7.5 mm 0 mm 0◦ 0◦ 3

3 7.5 mm 0 mm 0◦ 0◦ 5

4 0 mm 0 mm 0◦ 0◦ 1,3

5 0 mm −7.5 mm 0◦ 0◦ 3

6 0 mm 7.5 mm 0◦ 0◦ 5

7 0 mm 0 mm 0◦ 0◦ 1,4

8 0 mm 0 mm −15◦ 0◦ 4

9 0 mm 0 mm 8◦ 0◦ 5

10 0 mm 0 mm 15◦ 0◦ 4

11 0 mm 0 mm 0◦ 0◦ 2,4

12 0 mm 0 mm 0◦ −30◦ 4

13 0 mm 0 mm 0◦ 15◦ 5

14 0 mm 0 mm 0◦ 30◦ 4

15 0 mm 0 mm 0◦ 0◦ 2

?1 corresponds to training scans, where the microstages
are in neutral position. For testing, we use ?2 scans,
which also correspond to neutral position scans. ?3 scans
are used to train the linear stages. ?4 scans are used to
train the rotation and goniometer stages. ?5 scans are
used to test the kinematic model accuracy of the individ-
ual degrees of freedom.

To acquire the required data, we use the GE phoenix
nanotom m µCT device. In order to get a good contrast
for the glass eye surface as well as for the checkerboard
pattern in the acquired µCT data, we set the voltage
to 50 kV and the current to 310µA. To limit the re-
quired overall acquisition time for the 15 scans, we used
a so called fast scan mode, for which the specimen in the
nanotom rotates continuously 360◦ during a defined time
(in our case 20 min). These settings result in 1599 pro-
jections (3072 px× 2400 px), exposed with 750 ms each.
The isotropic voxels have the side length of 25 µm. The
resulting reconstructions (3D volumes) of the projections
are cropped to the content of importance and have the
size of 2100 px× 1900 px× 1700 px. Additionally, we re-
duce the grayscale depth from 16 bit to 8 bit by linearly

CSvol

y

x
(a) Grayscale inverted slice
along z-axis: eye and 3D

printed holder

CSvol

z

y

x

(b) 3D rendering: glass eye, holder
and plastic screws

Figure 5: Visualized µCT data (CSvol) acquired with
GE phoenix nanotom m

c1

c2 c3

c4

y

x

Figure 6: Checkerboard corners (ck) and CScb as seen
in the µCT data

mapping the grayscale-values between 23’000 and 35’000
to the range between 0 and 255, such that both, the eye
surfaces as well as the checkerboards are well visible. The
whole process of reducing the volume dimensions and the
grayscale depth is mainly required to reduce the amount
of data for further processing. The size of one final vol-
ume is still 6.8 GB.

Figure 5 illustrates the data acquired with the µCT.
Figure 5a shows one slice perpendicular to the z-axis and
Figure 5b shows a volume rendering of a µCT scan. Both
figures illustrate also the location and orientation of the
CSvol.

In order to be able to train our kinematic model with
the acquired data, we first need to segment the required
features.

µCT Data Segemention. We extract two different
types of features from the acquired volumes, four checker-
board corners (ck, where k ∈ {1, 2, 3, 4}), as they are
visible in Figure 6, and the surface of the glass eye (the
black contour visible in Figure 5a).

To train the kinematic model we need to have the cor-
ner point coordinates as they are visualized in Figure 6
for all 15 data volumes. We extract the coordinates of ck

by hand using Fiji’s “Big Data Viewer”. This plugin en-

5

ables to visualize a slice with an arbitrary orientation and
to show the 3D coordinates of a given voxel. This results
in 15 ∗ 4 3D coordinates in CSvol coordinate system.

The following procedure describes the extraction of the
glass eye for all volumes in neutral configuration (?1 and
?2, see Tab. I). We process the volumes (thresholding and
surface extraction) again by using Fiji9. The edge of the
eye is segmented by applying a threshold of 115, which
is an experimentally found value. Afterwards we extract
the surface from the segmented eye using the marching
cubes method (using the “3D Viewer” plugin). The sur-
face mesh can be exported as STL file directly with this
plugin. This results in a mesh basically consisting of an
outer and an inner surface of the glass eye along with
some unwanted holes and additional artifacts.

To clean up the geometry we import the mesh into
Blender. Within Blender we first create several objects
by separating the imported mesh by loose parts. All but
the biggest part (the eye) can be deleted. To save later
processing time, we apply a mesh decimation. We extract
the cornea and the eyeball separately to individually fit a
sphere afterwards. The cleaned cornea- and eyeball-mesh
are exported again as STL for all 5 mentioned volumes.

After µCT data acquisition and segmentation we end
up with four 3D coordinates each (ck, k ∈ {1, 2, 3, 4}) for
all 15 volumes. In addition we have an extracted cornea
and an eyeball mesh for five of the 15 volumes (where ?1
and ?2).

Kinematic Model Calibration. All data used as
input (checkerboard corner points, cornea mesh, eyeball
mesh) to train the internal model parameters θ are in
the right-handed CSvol coordinate system and are given
in voxel. We also express the other coordinate systems
relative to CSvol.

Let ckj ∈ R3 be a 3D vector in CSvol representing
a checkerboard corner point, where k ∈ {1, 2, 3, 4} en-
codes the checkerboard corner point number and j ∈
{1, 2, 3, ..., 15} encodes the number of the measurement
(#).

Let Gk
p be a group of ckj , where k ∈ {1, 2, 3, 4} en-

codes the checkerboard corner point number and p ∈
{1, 2, 3, 4, 5} encodes the type (?) of the scan group
(Tab. I).

A coordinate system is defined using four position vec-
tors expressed in CSvol. The first column vector rep-
resents the origin ~o of the corresponding CS expressed
in CSvol. The remaining three column vectors represent
the positions where the unit vectors (basis vectors) of the
corresponding CS point to:

CS =

ox xx yx zx
oy xy yy zy
oz xz yz zz
1 1 1 1

︸ ︷︷ ︸

Homogeneous coordinates in CSvol

.

Usually a CS is represented with a rigid 4 × 4-
transformation matrix (isometry) consisting of a rotation
and a translation. Our slightly different CS definition has

the advantage, that the unit vectors can directly be ex-
tracted after a transformation is applied to the CS.

First, we define CSlin1 and CSlin2, which represent the
linear stage 1 and 2, the two stages at the bottom of the
microstage stack. The origins ~o of CSlin1 and CSlin2 are
given by the median (˜) of three corner points, where
k = 1. These three corner points come from volumes,
where the stages were in neutral position during the scan
(?1 volumes):

~o(CSlin1) = ~o(CSlin2) = G̃1
1.

The x-axes of CSlin1 and CSlin2 are pointing in the
positive direction of the corresponding translational axis
of the appropriate microstage. They are defined using
the median (˜) of all four translation vectors

~x(CSlin1) = ~o(CSlin1) +
~x1

‖ ~x1‖
,

where ~x1 = {ck1 − ck2 |k ∈ {1, 2, 3, 4}}
:

and

~x(CSlin2) = ~o(CSlin2) +
~x2

‖ ~x2‖
,

where ~x2 = {ck4 − ck5 |k ∈ {1, 2, 3, 4}}
:

.
The y-axis ~y and z-axis ~z of both systems are defined

in an arbitrary way using the cross product, such that
we get well defined right handed CSs with orthogonal
axes. Particular orientations of ~y and ~z are not impor-
tant, since we use these two CSs only for translation along
the x-axis.

Second, we define CSgon and CSrot, which represent
the goniometer and the rotation stages, the two topmost
stages of the microstage stack. The origins ~o of CSgon

and CSrot are given by best fit circle centers. Because all
checkerboard corners k of the particular measurements
lie in a plane perpendicular to the rotation axes of the
stages, we take the median of the found circle centers.
To find the appropriate circle centers we fit for all four
corner points k a circle using three measurements per fit.
The best fit circle-function (BFC)10 returns the center of
the fitted circle:

~o(CSgon) = {BFC(ck7 , c
k
8 , c

k
10)|k ∈ {1, 2, 3, 4}}
:

,

~o(CSrot) = {BFC(ck11, c
k
12, c

k
14)|k ∈ {1, 2, 3, 4}}
:

.

To define the x-axes (rotation axes) of the two topmost
stages of the microstage stack, we take the normal vec-
tor perpendicular to the plane given by the appropriate
corner points:

~x(CSgon) = {(ck7 − ck8)× (ck7 − ck10)|k ∈ {1, 2, 3, 4}}
:

,

~x(CSrot) = {(ck11 − ck12)× (ck11 − ck14)|k ∈ {1, 2, 3, 4}}
:

,

where × denotes the cross-product. The y-axis ~y and z-
axis ~z of both systems are again defined in an arbitrary
way using the cross product, such that we get well defined
right handed CSs with orthogonal axes.

6

Third, we determine the center of the cornea best fit
sphere, as well as the center of the eyeball best fit sphere
based on the prepared mesh from measurement #1. To
do so, we use the segmented and cleaned meshes and we
fit a sphere in a least-square-sense10. We first rearrange
the general equation of a sphere,

(xi − x0)2 + (yi − y0)2 + (zi − z0)2 = r2,

such that we can write the expression in matrix notation
and solve for the unknowns x0, y0, z0, and r, which repre-
sent the center coordinates and the radius of the sphere.
The variables xi, yi, and zi are the coordinates of any
point lying on the surface of the particular sphere. This
results in two vectors zc for the cornea center and ze for
the eyeball center containing the best fit sphere center
coordinates and the appropriate radius.

Figure 7 illustrates zc, ze, and the vertices of the
mesh (gray dots) with the corresponding best fit spheres
(BFS). The visualized checkerboard corners (ck) repre-
sent the median of the corners, where the stages are in
neutral position(?1 containing #1, #4, and #7).

The kinematic model is at this stage characterized such
that we have defined four CSs corresponding to a mi-
crostage each and the centers and radii of the cornea and
the eyeball. All these position vectors are expressed in
CSvol. In order to get the true position of the sphere cen-
ters (cornea or eyeball), we just have to translate zc or ze
along the x-axis of linear stage CSs or rotate around the
x-axis of the goniometer or rotation stage according to
what is adjusted at the testing stage hardware (i.e. the
microstages).

Using the Kinematic Model. The trained testing
stage model takes four parameters (P1, P2, P3, P4). These
are the four individual microstage position settings which
are set on the testing stage hardware while the eye tracker
estimates the cornea center for the corresponding eye po-
sition. P1 and P2 are in millimeters (mm). P3 and P4

are in angular degrees (◦). Processing these parameters,
the trained kinematic model is able to return (expressed
in the common CScb) the position of the cornea center.
This position acts as ground truth for the eye tracker
validation (Figure 4). If we are adjusting a certain mi-
crostage position (e.g. P1 = +6 mm on the linear stage
1), then this affects not only the position of zc and ze, but
also the microstages (their CSs, respectively) above the
microstage which gets adjusted. The microstage stack is
as follows (from bottom to top): CSlin1, CSlin2, CSgon,
and CSrot. And on top of the stack is the eye with zc
and ze.

The workflow is as follows:

1. Hardware adjustment of a microstage a (a ∈
{lin1, lin2, gon, rot})

2. Basis change from CSvol to the corresponding CSa

of all remaining CSs, which are above the current
CSa in the stack

3. Basis change to CSa of the sphere centers (zc and
ze)

4. Application of the transformation matrix Ta (e.g.
rotation of +3 ◦) to all the remaining CSs and the
sphere centers

5. Basis change of the CSs and the sphere centers back
to CSvol

The workflow is repeated for all microstages (for all four
parameters, respectively) beginning with the lowest one.

The individual rigid transformations Ta, which are ap-
plied on the corresponding local CS look as follows (trans-
lation along or rotation around x-axis):

Tlin1 =

1 0 0 P1

0 1 0 0
0 0 1 0
0 0 0 1

 ,Tlin2 =

1 0 0 P2

0 1 0 0
0 0 1 0
0 0 0 1

 ,

Tgon =

1 0 0 0
0 cos(P3) − sin(P3) 0
0 sin(P3) cos(P3) 0
0 0 0 1

 ,

Trot =

1 0 0 0
0 cos(P4) − sin(P4) 0
0 sin(P4) cos(P4) 0
0 0 0 1

 .
The rigid transformations aTvol to change the basis

from CSvol to CSa and back are defined as follows. For
this, we use a method based on singular value decompo-
sition (SVD), which is robust in terms of noise11. The
method returns a rigid transformation aTvol (rotation
and translation) when passing CSa-matrix (expressed in
CSvol) and the CSvol-matrix (expressen in CSvol):

CSvol =

0 1 0 0
0 0 1 0
0 0 0 1
1 1 1 1

︸ ︷︷ ︸

Homogeneous coordinates in CSvol

.

Having aTvol, we change the basis of the remaining CSs
(CSs above the current one in the microstage stack), zc,
and ze. Afterwards, we apply the transformation Ta and
change the basis back to CSvol for all CSs b, which are
above CSa:

CS′b = (aTvol)−1 · (Ta · (aTvol · CSb)).

where a represents the CS, which we adjust (e.g. CSlin1).
The sphere centers are adjusted as well for each param-
eter P1, P2, P3, P4:

z′e = (aTvol)−1 · (Ta · (aTvol · ze)),

z′c = (aTvol)−1 · (Ta · (aTvol · zc)).

Step-by-step, we apply all transformations for a certain
testing stage configuration, until we have the position zc
and ze for the current microstage configuration expressed
in CSvol. The last step is to change the basis of the sphere
centers from CSvol to CScb, our common CS.

7

0200400600800100012001400160018002000

X [vx]

0

200

400

600

800

1000

1200

1400

1600

1800

Y
 [v

x]
c1,2

c3,4

ẑcẑe

(a) Top-down view

0 200 400 600 800 1000 1200 1400 1600 1800

Y [vx]

0

200

400

600

800

1000

1200

1400

1600

Z
 [v

x]

c1

c2

c3

c4

ẑc

ẑe

(b) Lateral view

Figure 7: Testing stage model visualization

For the eye tracker tests, the tracker is rigidly mounted
to a certain position, such that the checkerboard pattern
(also attached to the eye holder) is completely visible
by the eye tracker camera. For the external referencing
of the eye tracker (here with the testing stage) we per-
form a homography estimation12 based on a checkerboard
pattern5,6. This enables the eye tracker to express its
guess about the sphere centers in CScb. We configure the
testing stage (adjusting linear, rotation, and goniometer
stages) such that the visibility of the checkerboard pat-
tern from the eye tracker is well (sharp and complete
pattern). This particular stage configuration enables us
to access CScb from our kinematic model. The origin
lies on the corner point 4, the x-axis points towards cor-
ner point 1 and the y-axis points towards corner point 3
(Figure 6). This CScb definition holds for both the eye
tracker and the testing stage model.

The workflow described above is applied again at the
very end to transform the sphere centers to CScb accord-
ing to the microstage configuration (P1, P2, P3, P4) at
the time of external referencing.

III. EXPERIMENTS

III.A. Kinematic Model consistency

To make sure that we trained our testing stage model
sufficiently accurate, we used the µCT measurements
of type ?5 and ?2 (see Tab. I) to validate the integrity
of the trained x-axes of the individual CSs. We used
the median checkerboard corner points of the measure-

ments ?2 ({G̃1
2, G̃

2
2, G̃

3
2, G̃

4
2}) to predict with our testing

stage model the new checkerboard corner locations un-
der four certain configurations. We used one configura-
tion (P1, P2, P3, P4) for each DOF. For this, we took the
four different configuration sets from the measurements
?5. Having the new checkerboard corner locations calcu-
lated, we compared the model estimates (based on mea-

surements ?2) with the checkerboard corners, which we
extracted manually (measurements ?5). The mean error
(corner-reprojection-error) of the four ?5-measurements
times four checkerboard corners (16 points) was 31 µm.

Additionally, we analyzed the angles between the x-
axes of the trained coordinate systems (CSlin1, CSlin2,
CSgon, and CSrot). Assuming the microstages are ide-
ally mounted and aligned on top of each other, we would
have to expect angles of 90 ◦ between the x-axes. We
found out that we have a 89.5 ◦ angle between the linear
stages, 90.9 ◦ between the linear stage 2 and the goniome-
ter rotation axis and 90.2 ◦ between the rotation axes of
the goniometer and the rotation stage.

We also performed cornea-fit-refit experiments, where
we fitted a new sphere to all of the scans ?5. The mean
deviation between the five sphere centers was ± 36 µm.

III.B. Eye tracker accuracy

Setup. We tested a video based stereo eye tracker6

with the proposed testing stage hardware and the corre-
sponding kinematic model. For this, we rigidly mounted
both the testing stage and the eye tracker on an optical
bench and aligned the eye tracker such that a good visi-
bility on to the artificial eye of the testing stage was given.
We adjusted the focus and the aperture of the lens (part
of the eye tracker) and performed a camera calibration12

to get the intrinsic camera parameters (focal length, dis-
tortions). Having the camera calibrated, we adjusted the
testing stage such that the holder’s checkerboard was vis-
ible by the eye tracker (P1 = +8 mm, P2 = +7 mm, P3 =
8 ◦, P4 = +56 ◦). With the eye tracker we performed a
homography estimation (based on an image snapshot of
the checkerboard) in order to be able to transform the
eye tracker output, the center of the corneal curvature,
to the common checkerboard coordinate system CScb

5.
The camera calibration and the referencing to an exter-

8

nal system (testing stage or a medical device) is part of
the eye tracker calibration procedure.

For the actual validation, we set 20 different eye
positions and orientations with the testing stage to
mimic snapshots of a natural eye movement. To get a
better impression of the results we only adjusted one
microstage at the same time, while the three other
stages were in neutral position. The microstages were
set to P1 = {7.5, 10, 12.5, 15, 17.5}[mm], then P2 =
{7.5, 10, 12.5, 15, 17.5}[mm], P3 = {−10,−5, 0, 5, 10}[◦],
and P4 = {290, 298, 307, 316, 324}[◦]. This resulted in
five positions per microstage and with that in 20 eye
tracker estimates of the corneal curvature location z?c .
We set the same parameters on our kinematic model and
generated the ground truth of the center location of the
corneal curvature. Figure 4 illustrates this workflow.

Results. We compared the 20 different center loca-
tions of corneal curvature from the eye tracker with the
ground truth data from the testing stage. The mean
deviation between two 3D points, the accuracy a respec-
tively is as follows: The mean accuracy µ(a) = 0.68 mm,
the median accuracy ã = 0.67 mm. Subdivided into the
individual orientation components: The mean accuracy
µ(ax) = 0.32 mm, the median accuracy ãx = 0.33 mm.
The mean accuracy µ(ay) = −0.09 mm, the median ac-
curacy ãy = −0.09 mm. The mean accuracy µ(az) =
−0.54 mm, the median accuracy ãz = −0.55 mm. Fig-
ure 8 and Figure 9 illustrate the distribution of the error.

Thanks to the proposed method we were able to ana-
lyze the nature of the error and unveil a slight bias of a
yet unknown source. For this, we removed the average er-
ror vector from our eye tracker estimates and compared
the result again with the ground truth, then we got a
mean relative error µ(arel) = 0.32 mm. By eliminating
this error, the overall eye tracker accuracy can even be
increased.

We also evaluated the accuracy of the eye orientation.
For this, we calculated the geometrical axes for the eye
tracker estimate by using the pupil center and the cen-
ter of corneal curvature z?c and for the kinematic model
by using the centers of both spheres zc, ze. In theory,
all four points lie on the geometrical axis, however, it is
not the case for our eye phantom. That is why we cal-
culated the relative angle between the geometrical axes
from one measurement to the next and then we compared
these relative angles between the ground truth and the
eye tracker estimates. The mean relative angle error is
0.50◦, which indicates high angular precision.

IV. DISCUSSION

We were able to successfully validate the eye tracker of
interest with our testing stage hardware and the corre-
sponding kinematic model. The tests showed that the eye
tracker can determine the eye location (center of corneal
curvature) with an accuracy below 0.7 mm. The accu-
racy of the validated navigation system for proton radio-
therapy hence fulfills the requirements of sub-millimeter

4 6 8 10 12

5
5.5

6
6.5

X [mm]

Y
[m

m
]

Point c Location

Figure 8: Accuracy in the X/Y plane (o = eye tracker
estimate, x = ground truth, ... = DOF)

4681012

0

2

4

6

8

X [mm]
Z

[m
m

]

Point c Location

Figure 9: Accuracy in the X/Z plane (o = eye tracker
estimate, x = ground truth, ... = DOF)

accuracy. The mean relative error µ(arel) is smaller by
roughly a factor of two compared to the mean error µ(a),
which is a strong indication for high precision but also
for a slight bias of a yet unknown source. Our system
helped to detect and quantify this bias.

Figure 8 and Figure 9 show this slight systematic error
along the longitudinal axis of the eye tracker.

It is difficult to compare the results to any other similar
validation method, because to our best knowledge, no
one did so far such a comprehensive validation of the eye
location accuracy. Having for instance a closer look at4, it
is not clear how exactly the ground truth was generated.

IV.A. Testing stage hardware and kinematic model

The systematic error from the eye tracking tests may
be explained by an imprecise cornea best fit sphere. We
prepared the cornea mesh in a way, where we only had
limited influence on the vertex distribution. Fitting a
sphere with another method than with a least-square
method might be more accurate.

Maybe the most important error source is the man-
ual segmentation of the checkerboard corner points. To
improve this, we suggest exchanging the checkerboard
pattern, which is used on the one hand for the external
referencing of the eye tracker (homography) and on the

9

other hand to train and validate the whole testing stage
model. Hence, the pattern, its segmentation respectively,
is central for the validation. A better pattern might be
dots in a certain arrangement (similar to the squares in
the checkerboard pattern). This pattern could easily be
segmented automatically, by choosing the center of mass
of the circles or the ellipsoids, respectively, taking the
thickness of the ink into account.

IV.B. Eye tracker

Depending on the application different levels of accu-
racy are required. Our achieved sub-millimeter accuracy
in determining the eye location is sufficient for our med-
ical application with especially high demands. If there
should be higher demands, the detailed validation results,
for instance the distribution of the error, might provide
helpful information for eye tracker improvement.

V. CONCLUSION

Using an eye tracker to localize the eye in space can po-
tentially improve today’s eye interventions. For instance,
when treating eye tumors with protons, our non-invasive
eye tracker based solution might some day replace the
state-of-the-art invasive navigation method.

We proposed a quantitative evaluation method with
which we showed that our eye tracker is able to fulfill the
requirements, namely, to determine the location of the
eye with sub-millimeter accuracy. Our proposed evalua-
tion method does not replace the eye tracker tests with
volunteers that are used nowadays, but it complements
the validation, enabling new eye tracking applications:
eye localization.

We are sure, that in the future more and more appli-
cations, especially in ophthalmology, will benefit from an
eye localization system.

ACKNOWLEDGMENTS

We would like to thank the members of the Biomate-
rials Science Center (BMC) of the University of Basel
for their support with the data acquisition with the µCT
system. We thank also Otto E. Martin from the Swiss
Institute For Artificial Eyes for providing us a hand-
crafted eye and for sharing his profound knowledge. The
work is funded by the Swiss National Science Foundation
(SNSF).

REFERENCES
a)stephan.wyder@unibas.ch
b)philippe.cattin@unibas.ch
1Narcizo Fabricio Batista, Queiroz Jose Eustaquio, Gomes Her-
man Martins. Remote Eye Tracking Systems: Technologies and
Applications in 2013 26th Conference on Graphics, Patterns and
Images Tutorials:15–22IEEE 2013.

2Hansen Dan Witzner, Ji Qiang. In the Eye of the Beholder: A
Survey of Models for Eyes and Gaze Pattern Analysis and Ma-
chine Intelligence, IEEE Transactions on. 2010;32:478–500.

3Duchowski Andrew T. Eye tracking methodology - theory and
practice (2. ed.). London: Springer London 2007.

4Via Riccardo, Fassi Aurora, Fattori Giovanni, et al. Optical
eye tracking system for real-time noninvasive tumor localization
in external beam radiotherapy Medical Physics. 2015;42:2194–
2202.

5Wyder Stephan, Hennings Fabian, Pezold Simon, Hrbacek Jan,
Cattin Philippe C. With Gaze Tracking Toward Noninvasive Eye
Cancer Treatment Biomedical Engineering, IEEE Transactions
on. 2016;63:1914–1924.

6Wyder Stephan, Cattin Philippe C. Stereo Eye Tracking with a
Single Camera for Ocular Tumor Therapy in Proceedings of the
Ophthalmic Medical Image Analysis International Workshop:81–
88 2016.

7Świrski Lech, Dodgson Neil. Rendering synthetic ground truth
images for eye tracker evaluation in Proceedings of the 2014 Sym-
posium on Eye-Tracking Research & Applications(New York,
New York, USA):219–222ACM 2014.

8Guestrin Elias Daniel, Eizenman Moshe. General theory of
remote gaze estimation using the pupil center and corneal
reflections Biomedical Engineering, IEEE Transactions on.
2006;53:1124–1133.

9Schindelin Johannes, Arganda-Carreras Ignacio, Frise Erwin, et
al. Fiji: an open-source platform for biological-image analysis
Nature Methods. 2012;9:676–682.

10Leon Steven J. Linear algebra with applications Macmillan New
York 1980.

11Besl P J, McKay H D. A method for registration of 3-D shapes
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence. 1992;14:239–256.

12Zhang Zhengyou. A flexible new technique for camera calibration
Pattern Analysis and Machine Intelligence, IEEE Transactions
on. 2000;22:1330–1334.

mailto:stephan.wyder@unibas.ch
mailto:philippe.cattin@unibas.ch

	Eye Tracker Accuracy: Quantitative Evaluation of the Invisible Eye Center Location
	Abstract
	I Introduction
	II Methods
	II.A Eye Tracker Model
	II.B Testing Stage Hardware
	II.C Testing Stage Kinematic Model

	III Experiments
	III.A Kinematic Model consistency
	III.B Eye tracker accuracy

	IV Discussion
	IV.A Testing stage hardware and kinematic model
	IV.B Eye tracker

	V Conclusion
	 Acknowledgments
	 References

