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Abstract

Purpose—Unruptured cerebral aneurysms pose a dilemma for physicians who need to weigh the 

risk of a devastating subarachnoid hemorrhage against the risk of surgery or endovascular 

treatment and their complications when deciding on a treatment strategy. A prediction model could 

potentially support such treatment decisions. The aim of this study was to develop and internally 

validate a model for aneurysm rupture based on hemodynamic and geometric parameters, 

aneurysm location, and patient gender and age.

Methods—Cross-sectional data from 1,061 patients were used for image-based computational 

fluid dynamics and shape characterization of 1,631 aneurysms for training an aneurysm rupture 

probability model using logistic group Lasso regression. The model’s discrimination and 

calibration were internally validated based on the area under the curve (AUC) of the receiver 

operating characteristic (ROC) and calibration plots.

Results—The final model retained 11 hemodynamic and 12 morphological variables, aneurysm 

location, as well as patient age and gender. An adverse hemodynamic environment characterized 

by a higher maximum oscillatory shear index, higher kinetic energy and smaller low shear area as 

well as a more complex aneurysm shape, male gender and younger age were associated with an 

increased rupture risk. The corresponding AUC of the model was 0.86 (95% CI [0.85, 0.86], after 

correction for optimism 0.84).
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Conclusion—The model combining variables from various domains was able to discriminate 

between ruptured and unruptured aneurysms with an AUC of 86%. Internal validation indicated 

potential for the application of this model in clinical practice after evaluation with longitudinal 

data.
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Introduction

Cerebral aneurysms are a common disease occurring in about 2-3 % of the overall 

population [1, 2]. Aneurysm rupture leads to subarachnoid hemorrhage (SAH), which is 

associated with high mortality and morbidity and, consequently, a significant economic 

burden [3–5]. The risk of aneurysm treatment to prevent SAH often outweighs the natural 

aneurysm rupture risk of about 1 % per year for incidentally discovered aneurysms [6–8]. In 

most incidental cases, aneurysms remain asymptomatic and never rupture. An increasing use 

of medical imaging has led to larger numbers of detected unruptured aneurysm, thus more 

frequently requiring treatment decisions [9]. It is desirable to treat only those aneurysms that 

are likely to rupture in future. The mechanism that lead to aneurysm rupture are, however, 

not completely understood yet. It is known that hemodynamics play an important role in the 

aneurysm pathogenesis [10]. Hemodynamics in turn are influenced by aneurysm geometry, 

and several morphological parameters have been related to aneurysm rupture [11, 12]. 

Further risk factors include aneurysm location, symptoms caused by the aneurysm, as well 

as the patient’s age and smoking and hypertension status [7, 13–16].

An accurate prediction model based on the different types of risk factors could possibly 

improve treatment decisions by identifying patients with a high aneurysm rupture risk. 

Whereas publications addressing the identification of risk factors abound [12], only four 

models evaluating a patient’s aneurysm rupture risk have been reported [14, 17–19]. The 

two models taking hemodynamic and morphological information into account are based on 

small sample sizes (204 and 157 aneurysms for [19] and [18], respectively) and have not 

been validated so far. The aim of this study was therefore the development and internal 

validation of a model for assessing the aneurysm rupture likelihood based on a large patient 

cohort (>1600 aneurysms) including patient characteristics, hemodynamic parameters, 

morphological variables and aneurysm location.

Methods

Patient Data

This study is based on retrospective patient and image data from patients who underwent 

cerebral angiography in five different hospitals in the United States, Japan, and Colombia. 

Cerebral angiography was performed for diagnostic purposes for diseases not related to the 

aneurysm (incidental aneurysms) or associated with the aneurysm (symptomatic and 

ruptured aneurysms). In cases of unruptured aneurysms with follow-up data, only the 

baseline information was used in this study. Priorto the analyses, all data has been 
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anonymized. Fusiform aneurysms and aneurysms with unknown rupture status were 

excluded, resulting in a total number of 1631 aneurysms in 1061 patients. Of these 

aneurysms, 492 were ruptured at presentation at the hospital (30.17%). The rupture rate for 

the 1282 aneurysms in female patients was 27.15% and significantly lower than rupture rate 

of 41.26% in male patients (p<0.001, Chi-Square Test). The mean patient age was 56.25 

years (standard deviation 13.77 years). Multiple aneurysms were present in 329 patients 

(31%).

The distribution of aneurysms by locations is shown in Fig. 1 and Tab. 3. Aneurysms at the 

anterior communicating artery (ACOM) and the cavernous segment of the internal carotid 

artery (ICA) had the highest and lowest rupture rates, respectively (65.5% and 3.1%). The 

distribution of aneurysms by aneurysm size groups is shown in Tab. 1 in the Online Suppl. 

Material.

Hemodynamic Modeling

For each case, the aneurysm and surrounding vasculature were segmented from 3D 

angiographic images and modeled with an unstructured grid with a maximum element size 

of 0.2 mm. Arteries were cut perpendicularly to their axes for subsequent inlet and outlet 

definition. An in-house finite element solver was used to numerically solve the unsteady 

Navier-Stokes equations [20]. Pulsatile flow conditions obtained from phase-contrast MR 

measurements in healthy subjects [21] were scaled using a power law of the inlet vessel area 

[22] and, depending on the aneurysm location, imposed as inflow boundary conditions at the 

ICA or vertebral artery (VA), using the Wormersley solution [23]. Outlet conditions were set 

as pressure and flow outlets consistent with Murray’s law. Blood was modeled as an 

incompressible Newtonian fluid with a viscosity of 0.04 Poise and a density of 1.0 g/cm3. 

Vessel walls were assumed as rigid. Two cardiac cycles with a heart-beat rate of 60 beats per 

minute were calculated with 100 time steps per cardiac cycle and the results from the second 

cycle were used for subsequent hemodynamic characterization.

Post-Processing

From the computed flow field and the 3D model of the aneurysm, 22 hemodynamic and 25 

morphological parameters were automatically calculated as previously described [24–27] 

(see Tab. 1 to 3) in order to characterize the aneurysm hemodynamic environment and sac 

geometry.

Statistical Model Development

To develop the statistical prediction model, all 47 hemodynamic and morphological 

variables as well as patient age were included as continuous variables. The categorical 

variables gender and aneurysm location were encoded as dummy variables with sum-to-zero 

constraint. For all the 1631 cases, all information was available (no missing data). For model 

fitting, logistic group Lasso regression was used [28]. This approach results in models 

where, depending on the magnitude of a tuning parameter, coefficients of certain variables 

are set to zero, and hence enables variable selection [29]. Ten-fold cross-validation was used 

to select the tuning parameter. In this step, the data were split into training and validation 

sets for each of the ten folds and the optimal value of the tuning parameter maximizing the 
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average area under the curve (AUC) of the receiver operating characteristic (ROC) in the 

validation sets was determined via a grid search. The columns of the feature matrix of the 

continuous parameters were centered and standardized to unit-norm and the sub-feature 

matrix for the dummy variables for the aneurysm location was standardized by means of the 

singular value decomposition [30]. Confidence intervals of the fitted coefficients were 

determined as bootstrap percentiles based on 500 repetitions of bootstrap resampling. To 

evaluate whether the predictive performance can be improved when considering different 

effects of hemodynamics, morphology, or patient characteristics depending on aneurysm 

location, one further model was fitted including interaction terms between aneurysm 

location and the other variables. Such a model interpolates between separate models for each 

location and a global model.

Performance Measures and Internal Validation

To assess the model’s performance, its discrimination and calibration were evaluated [31]. 

Discrimination was measured by the AUC of the ROC curve with confidence intervals 

obtained by 1000 replicates of bootstrapping. Calibration was evaluated qualitatively by 

calibration plots as well as quantitatively with the calibration slope and intercept resulting 

from fitting a logistic regression model with the linear predictor from the obtained model as 

only variable [32]. As part of the visualization of the calibration plots, the observed 

outcomes were regressed on the predicted probability using the loess algorithm with a span 

parameter of 0.75 [33]. To evaluate the model’s accuracy in terms of true and false positive 

rates, a threshold for classification was selected as the probability corresponding to the point 

on the ROC curve with the smallest Euclidean distance to (0,1) [34].

The described measures were computed for the data used for model training. Moreover, 640 

repetitions of ten-fold cross-validations (128 for the model including interactions) were used 

to estimate the optimism in AUC and to identify important variables [32, 35].

The results from the cross-validation were compared to 32 cross-validated models based on 

a version of the support vector machine (SVM) classifier with cardinality constraints as in 

[36]. Model fitting for this approach is computationally demanding, but scales to problems 

with a moderate number of variables due to recent advances in mixed integer linear 

programming [37]. The approach has been shown to outperform the Lasso from the 

perspective of model parsimony in a variety of situations of practical interest [37, 38]. 

Therefore, the cardinality-constrained SVM classifiers were used to complement the 

identification of important variables based on the cross-validated Lasso models.

The cardinality-constrained SVM classifier was implemented using the ILOG CPLEX 

software package [39]. All other statistical analyses were performed with scripts written in 

the R language [40].

Results

Variables Retained In the Model

The final model retained the following 26 variables (variables having non-zero coefficients): 

aneurysm inflow concentration index (ICI), kinetic energy (KE), viscous dissipation (VD), 
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low shear area (LSA), shear concentration index (SCI), maximum oscillatory shear index 

(OSI), minimum wall shear stress (WSS), normalized WSS and maximum normalized WSS 

(MWSSnorm), vortex core line length (corelen), maximum peak velocity (Vmax), neck area 

(Narea), aspect ratio (AR), aneurysm width (Awidth), height-to-width ratio (HWR), neck 

diameter (Ndiam), bulge location (BL), parent vessel diameter (Vdiam), volume-to-ostium 

ratio (VOR), non-sphericity index (NSI), the Gaussian and mean curvatures GAA, GLN, 

MLN, as well as patient age, gender, and aneurysm location. The coefficients for the 

variables including the 95% bootstrap confidence percentiles as well as the observed ranges 

in the data are shown in Tab. 1–3. The intercept of the model was −1.426. The variables that 

were most frequently selected during nested cross-validation (>99% of cross-validation 

samples) were patient age and gender, aneurysm location, aneurysm width, kinetic energy, 

LSA, MLN, NSI, maximum OSI and the parent vessel diameter (see Fig. 2). Except for the 

WSS in the parent vessel (WSSves), all variables that were dropped in the process of model 

fitting had a lower relative frequency of variable retention in the cross-validation samples 

than the minimum frequency of the variables retained in the final model (as indicated by the 

black horizontal line in Fig. 2). For the model resulting from the cardinality-constrained 

SVM classifier, the variables that were most frequently retained in the cross-validation 

samples (>99%) were age, location, MLN, and NSI. Overall, the results showed similar 

trends of retention in the cross-validation samples for most variables for the Lasso and 

cardinality-constrained SVM approach (see Fig. 3). At the same time, the SVM classifiers 

included fewer variables on average (19.55 versus 25.03).

Predictive Performance

The AUC of the final model was 0.8553 (after correction for optimism 0.8350, mean and 

95 % bootstrap confidence interval 0.8551 [0.8545,0.8557]). The “optimal threshold” for 

classification based on the ROC curve was 0.32 (see Fig. 4, left). Classification based on this 

threshold resulted in a true positive rate (TPR) of 0.77, a false positive rate (FPR) of 0.21, a 

precision of 0.62, a negative predictive value (NPV) of 0.89, and an overall misclassification 

error of 0.21. Compared to a threshold of 0.5, except for the precision all measures were 

higher (see Tab. 4). The calibration plot (Fig. 4, right) illustrates a reasonable goodness of fit 

of the model, although the fitted line deviates slightly from the 45° straight line 

corresponding to perfect goodness of fit. The calibration slope and intercept were 1.12 and 

0.07, respectively, indicating that compared to an optimal fit, the predicted probabilities 

were too high and too low near the two boundaries corresponding to extremely low and high 

rupture risks, respectively. As also illustrated by the calibration plot, in order to improve the 

fit, predicted probabilities for ruptured aneurysms should be larger (“move triangles to right” 

in Fig. 4) and for unruptured aneurysm should be lower (“move triangles to left”).

For the model including interaction terms, the AUC was 0.8610 (after correction for 

optimism 0.8395, mean and 95 % bootstrap confidence interval 0.8608 [0.8602, 0.8614]). 

The calibration slope and intercept were 1.11 and 0.06, respectively. Flence, the interaction 

model was only minimally better in terms of discrimination and calibration (a perfectly 

calibrated fit has a calibration slope of 1 and intercept of 0). Therefore, the interaction model 

was not further considered.
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The cardinality-constrained SVM classifiers achieved based on the cross-validation samples 

a mean AUC of 0.8304 with a 95% confidence interval of [0.8303, 0.8306], Thus, the 

discrimination was better for the Lasso model.

The fitted model was further compared to a prediction model in the literature [19] including 

the variables size ratio, OSI and normalized WSS. When applying this model to our data, the 

AUC was 0.6997 and the calibration slope and intercept of 0.69 and 0.11, respectively. This 

indicates a reduced discrimination and poor calibration of that model in our data. Another 

model fitted to our data using regular logistic regression to determine the regression 

coefficients for the same variables as in [19] achieved a similar reduced predictive 

performance (AUC of 0.7046).

Discussion

The proposed rupture risk probability model combining hemodynamic, morphological, and 

patient information together with aneurysm location achieved a clinically useful 

discrimination (AUC of 0.86) and appropriate goodness of fit.

Important Variables

Resulting from the model fitting process, the model retained 11 hemodynamic and 12 

geometric parameters as well as gender, age, and aneurysm location. The inclusion of 

variables from all categories indicates the importance of combining variables from various 

domains for precise aneurysm rupture risk assessment.

The relative frequencies of retention in the models fitted for each cross-validation sample 

can be seen as an indicator for the importance of a variable. Accordingly, variables that play 

an important role for the discrimination between ruptured and unruptured aneurysms 

include: maximum OSI, kinetic energy, LSA, aneurysm width, NSI, MLN, as well as patient 

gender and age and aneurysm location. NSI, MLN, patient age and aneurysm location were 

also retained most frequently in the models obtained by the cardinality-constrained SVM 

approach, further emphasizing the importance of these four variables.

Based on the model’s coefficients for these variables (see Tab. 1–3), aneurysms from male 

and younger patients have a higher predicted probability of being ruptured compared to 

female and older patients. Furthermore, aneurysms that are more likely to be ruptured have 

an adverse hemodynamic environment characterized by a higher maximum OSI, higher 

kinetic energy and smaller LSA. In contrast to most studies [7, 14, 17], smaller aneurysm 

width, which is strongly correlated to aneurysm size, was associated with a higher 

probability of being ruptured even though unruptured aneurysms had a smaller width 

compared to ruptured aneurysms in our database (although not significantly in a univariate 

comparison). Besides, rupture-prone aneurysms had a less regular shape in terms of larger 

NSI and higher mean curvature (MLN). With respect to aneurysm location, aneurysms at the 

anterior cerebral artery (ACA), anterior communicating artery (ACOM), tip of the basilar 

artery, posterior communicating artery (PCOM), VA and the bifurcation of the middle 

cerebral artery (MCA) had a higher rupture risk compared to the other locations.
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These characteristics are illustrated by five cases in Fig. 5. The three aneurysms at the left 

are unruptured aneurysms harbored by older female patients (69 years for a, 68 years for b) 

with a low predicted probability of being ruptured (2% for a-I, 3% for b, and 6% for a-II). 

Both aneurysms are located at the ICA (a-I and b at the ophthalmic segment, a-II at the 

superior hypophyseal segment). The two aneurysms at the ophthalmic segment are 

characterized by low flow conditions, particularly lower maximum OSI and maximum 

velocity as well as higher LSA (see Tab. 5). Furthermore, the shape of all three unruptured 

aneurysms is regular and approximately spherical as also indicated by a low NSI and mean 

curvature (MLN). In contrast, the two aneurysms at the right are ruptured and harbored by 

young, male patients (40 and 42 years for c and d, respectively). Their predicted risk of 

being ruptured is 97 and 98%, respectively. Both ACOM aneurysms are characterized by 

irregular shapes and strong and complex flows. Although being unruptured, the aneurysm at 

the superior hypophyseal segment (a-II) is characterized by a relatively low LSA and 

comparably high OSImax. At the same time, the predicted probability of 6% is low in 

agreement with the rupture status, illustrating the value of combining several variables in a 

multivariable model for risk prediction.

Compared to previous studies, the association between a non-spherical shape and aneurysm 

rupture is consistent with past findings [41]. In contrast, a larger aneurysm size is commonly 

related to an increased rupture risk [14,17], which is conflicting with the negative 

association with aneurysm width in our model. However, some research indicates that the 

ratio between aneurysm and parent vessel size is a better discriminant between ruptured and 

unruptured aneurysms [12]. Moreover, aneurysm width did not differ significantly between 

ruptured and unruptured aneurysms in our univariate comparison.

Regarding the hemodynamics, a larger mean OSI and LSA have previously been linked to a 

higher rupture risk [42–44]. Similarly, maximum OSI was positively associated with rupture 

in our model. In contrast, a decrease in rupture risk with larger LSA was found here. As in 

the case of aneurysm width, LSA was not significantly different between ruptured and 

unruptured aneurysms in our univariate comparison. However, when restricting this 

univariate analysis to PCOM aneurysms, LSA was significantly larger for ruptured 

aneurysms.

The effect of gender on the aneurysm rupture risk is not clear [7, 16]. The distribution of 

aneurysm location differs between males and females [45]. For the fitted model including 

interactions, an interaction term between gender and aneurysm location was retained. This 

suggest that the association between gender and rupture risk depends on the location. For 

example, at some locations aneurysm rupture risk might be influenced by the patient’s 

gender, whereas at other locations gender does not affect the rupture risk.

Although age has previously been identified as an important risk factor, the direction of this 

association is not clear [7, 14, 46]. In our model, aneurysm rupture risk decreased with 

increasing age.

Finally, the importance of aneurysm location that was observed in this study is consistent 

with previous findings [14, 17].
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When considering the associations with aneurysm rupture described above, it is important to 

bear in mind that the interpretation of a variable’s coefficient in a multivariate model is not 

straightforward since it quantifies the change of predicted probability when all other 

variables are kept constant.

Model Evaluation

Incidental aneurysms pose a dilemma for physicians because for deciding on a treatment 

strategy, they must weigh the risk of a devastating SAH against the risk of surgery or 

endovascular treatment and their complications. A prediction model could potentially 

support these treatment decisions.

For the presented model, when using a threshold of 32%, which maximizes the TPR and 

minimizes the FPR based on the ROC curve, to classify an aneurysm as ruptured, 77% of 

ruptured aneurysms were correctly classified. Of the unruptured aneurysms, 22% were 

wrongly classified as ruptured. However, although this threshold is “optimal” in terms of 

FPR and TPR, in the end, a treatment threshold depends on the patient and physician. 

Typically, physicians weigh several factors when deciding on a treatment strategy. 

Therefore, future impact studies are required to assess the influence of the model on 

treatment strategies in clinical practice.

In the literature, only one model including hemodynamic and morphological parameters has 

previously been reported [19] (based on [42]). When evaluating that model in our data, the 

AUC was 0.6997 indicating only moderate discrimination. The re-fitted model taking the 

variables from [19] increased the AUC only slightly. Hence, the proposed variables do not 

discriminate well between ruptured and unruptured aneurysms in our data. Possible reasons 

for this observation include differences in patient population and potentially overfitting in 

case of the previous model. The latter is also indicated by a calibration slope of less than one 

for that model in our data.

The PHASES score [14], which is based on patient characteristics, aneurysm size and 

location, achieved an AUC of 0.82 in its internal validation. When applied to external data, 

the AUC was reduced to 0.66 [47]. Our results indicate that the prediction of aneurysm 

rupture risk can be improved by including hemodynamic and morphological information. At 

the same time, our model could be further advanced by additionally considering clinical risk 

factors like smoking and hypertension. This information was only available for a subset of 

patients and was therefore not considered at this point.

Application in Clinical Practice

The presented work aims at being a first step for providing physicians with guidance for 

treatment decisions of unruptured aneurysms. Whereas the model does not discriminate 

between incidental and symptomatic aneurysms and hence applies to both, the model could 

be particularly used for incidental aneurysms, where a treatment decision is more difficult to 

evaluate. When applying the presented model in clinical practice, it is important to consider 

that the model was developed based on cross-sectional data. Hence, the model discriminates 

between ruptured and non-ruptured aneurysms at presentation at the hospital. Related to 

that, when referring to “aneurysm rupture risk” with respect to our model, it is based on the 
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implicit assumption that rupture-prone aneurysms resemble aneurysms that have already 

ruptured. Therefore, aneurysms classified as “unruptured” or “low-risk” with our model 

should be observed during follow up to identify possible changes that could increase the 

predicted rupture risk. Besides, the computed predicted probabilities should be regarded in 

the context of risk related to treatment, a patient’s comorbidities, and personal characteristics 

such as anxiety about leaving an aneurysm untreated.

Since the use of cross-sectional data currently limits the interpretation of the computed 

probability in terms of risk of a future aneurysm rupture, the model needs to be validated in 

future with longitudinal data. Subsequently, ensuring the model’s applicability in clinical 

practice is essential. To facilitate a patient’s individual risk assessment future work includes 

the development of a web-based tool for allowing physicians the application of the model to 

new cases. Since hemodynamic or complex morphological information is currently not 

available for most aneurysms in a clinical setting, the web-interface will include the option 

of risk assessment for aneurysms with missing information based on reduced feature models 

[48]. At the same time, the presented work indicates that incorporating aneurysm risk 

assessment by means of hemodynamic and shape analysis is beneficial, which should be 

feasible in the long-term [49].

Limitations

The used data are subject to a selection bias since only patients that underwent cerebral 

angiography were considered. Thus, unruptured aneurysms that were only evaluated by MR 

or CT angiography as well ruptured aneurysms of patients who died before undergoing 

angiographic imaging are missing in our database.

Regarding the patient populations used for model generation, the majority of the 1631 

aneurysm data were obtained from hospitals in the United States (1614 aneurysms). 

Therefore, differences in model performances when stratifying by country were not 

examined in this study.

With respect to the CFD simulations, blood was modeled as a Newtonian fluid and rigid 

vessel walls were assumed. However, these assumption seem to have a limited influence on 

the computed hemodynamic characteristics [50, 51].

In the performed analysis, it was implicitly assumed that ruptured aneurysms do not 

significantly alter their shape due to the event of rupture. This assumption needs to be 

assessed in future.

For the presented model, linear associations between the independent variables and the 

outcome were assumed. Future work will include the generation and evaluation of a model 

including non-linear relations to improve the current model.

The model needs to be externally validated, i.e. tested on data from different hospitals and 

populations. Furthermore, as stated earlier, the model particularly needs to be validated with 

longitudinal follow-up data. Both aspects will be part of future work.
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This publication follows the TRIPOD statement [52] to enable and encourage external 

validation by other research groups.

Conclusion

The developed probability model for aneurysm rupture combining variables from various 

domains was able to discriminate between ruptured and unruptured aneurysms with an AUC 

of 86%. Internal validation indicated good potential for the application of this model in 

clinical practice after evaluation with longitudinal data, which is planned for future work.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Distribution of ruptured and unruptured aneurysms by location. The numbers refer to the 

rupture rates for each location. ACA=anterior cerebral artery, ACOM=anterior 

communicating artery, BA-DIST-PROX=basilar artery other than tip, BA-TIP=tip of basilar 

artery, ICA-ACHOR=internal carotid artery – anterior choroidal, ICA-BIF=internal carotid 

artery bifurcation, ICA-VAC=cavernous internal carotid artery, ICA-OPH=internal carotid 

artery – ophthalmic, ICA-SHYP= superior hypophyseal segment internal carotid artery, 
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MCA-BIF=middle cerebral artery bifurcation, MCA-DIST-PROX=middle cerebral artery 

other than bifurcation, PCOM=posterior communicating artery, VA=vertebral artery
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Fig. 2. 
Relative frequency of inclusion of variables in samples from nested cross-validation for 

variables retained in the final model (top) and variables dropped out in the process of model 

fitting (bottom). The definitions of the variables can be found in Tab. 1 and 2
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Fig. 3. 
Comparison of relative frequencies of inclusion of variables in samples from nested cross-

validation for the Lasso and cardinality-constrained SVM classifier solution (ordered by the 

relative frequencies for the Lasso approach). Asterisks indicate the variables that were 

retained in the final Lasso model
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Fig. 4. 
ROC curve (left) and calibration plot (right) for the fitted model. The blue and red dot on the 

ROC curve indicate the value corresponding to a classification threshold of 0.32 and 0.5, 

respectively. The circles at the top and the bottom of the calibration plot show the observed 

data. Observed outcome grouped by deciles is depicted as triangles and represented by the 

loess smoother with the dashed line. For a perfectly calibrated fit, all triangles and the loess 

smoother would lie on the 45°-line
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Fig. 5. 
Illustration of cases. The panels at the top and bottom show the distribution of WSS and 

streamlines at half of the cardiac cycle, respectively. The three cases at the left are 

unruptured aneurysms with a predicted probability for rupture of 0.02 (a-I), 0.06 (a-II), and 

0.03 (b). The two cases at the right are ruptured and have predicted probabilities of 0.97 (c) 

and 0.98 (d). The white lines delineate the aneurysm neck
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Table 1

Definition, observed range in the data and model coefficients with 95% confidence interval for the 

hemodynamic variables.

Variable Definition Coefficient Range

ICI Inflow concentration index 0.0374 [−0.07, 0.81] [0; 6.64]

Q [cm3/s] Mean inflow rate into aneurysm 0 [−0.64, 0.67] [0; 6.21]

KE [erg] Mean kinetic energy 0.0005 [0, 0.005] [0; 3284.06]

SR [1/s] Mean shear rate 0 [−4e-3, 0.01] [0.23; 1598.94]

VE [cm/s] Mean velocity 0 [−0.23, 0.05] [0.01; 45.58]

VO [1/s] Mean vorticity 0 [0, 0.01] [0.19; 2171.28]

VD [erg/s] Mean viscous dissipation −1.736e-6 [−5.45e-4, 0] [0.01; 38636.9]

WSSmax [dyne/cm2] Maximum wall shear stress 0 [−1.00e-3, 3e-3] [1.18; 3294.26]

WSSmin [dyne/cm2] Mínimum wall shear stress −0.0389 [−0.21, 0.16] [0; 32.89]

WSSmean [dyne/cm2] Mean wall shear stress 0 [−0.09, 0.01] [0.01; 164.91]

LSA (%)
Low shear area

1 −0.0040 [−0.01, 0] [0; 100]

SCI Shear concentration index −0.0097 [−0.05, 4e-3] [0; 80.93]

OSImax Maximum oscillatory shear index 0.8438 [−0.54, 3.00] [0; 0.5]

OSImean Mean oscillatory shear index 0 [−17.79, 14.30] [0; 0.2]

WSSves [dyne/cm2] Mean wall shear stress in parent vessel 0 [−0.02, 0.01] [4.26; 188.16]

WSSnorm Normalized WSS = WSSmean/WSSves −0.3007 [−2.90, 0.10] [0; 2.01]

MWSSnorm Maximum normalized WSS = WSSmax/WSSves 0.0031 [−0.10, 0.06] [0.12; 58.38]

Corelen [cm] Vortex core line length (flow complexity) 0.0264 [−0.09, 0.17] [0; 18.65]

podent Proper orthogonal decomposition (POD) entropy (flow stability) 0 [−4.09, 0.92] [0.01; 1.61]

podenum Proper orthogonal decomposition – number of modes to account for 
95% of total energy (flow stability)

0 [−0.26, 0.69] [1; 8]

Vmax [cm/s] Peak velocity 0.0018 [0, 0.07] [0.6; 440.8]

VmaxMean [cm/s] Time average of maximum velocity in space 0 [−0.12, 0] [0.31; 241.09]

1
LSA=percentage of aneurysm area, where WSSmean < WSSves – standard deviation of WSS in the parent vessel
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Table 2

Definition, observed range in the data and model coefficients with 95% confidence interval for the geometric 

variables

Variable Definition Coefficient Range

Avol [cm3] Aneurysm volume 0 [0, 4.58] [0; 21.1]

Asize [cm] Max. distance between any two points on the aneurysm surface 0 [0, 4.99] [0.11; 3.93]

Aarea [cm2] Aneurysm area 0 [−1.78, 0.31] [0.01; 37.1]

Nsize [cm] Max. distance between any two points on the neck surface 0 [−2.57, 5.93] [0.11; 3.2]

Narea [cm2] Area of the neck surface −0.1507 [−8.81, 0.45] [0.01; 2.95]

Depth [cm] Max. distance of all points on aneurysm dome from aneurysm neck 0 [−1.94, 4.55] [0.02; 3.21]

AR Aspect ratio = aneurysm depth/neck diameter 0.0515 [0, 2.53] [0.07; 5.12]

Aheight [cm] Max. normal distance of all points on aneurysm dome from aneurysm neck 0 [−3.48, 2.88] [0.03; 3.11]

Awidth [cm] Max. diameter of aneurysm slices parallel to aneurysm neck −1.7079 [−12.11, 0] [0.09; 3.39]

HWR Height to width ratio = aneurysm height/ aneurysm width 0.1517 [−1.08, 3.53] [0.18; 2.28]

Ndiam [cm] Equivalent diameter of 2D neck = 4 × area/perimeter −0.7827 [−5.54, 10.32] [0.09; 1.3]

Aspect Aspect ratio 2 = aneurysm height/neck diameter 0 [−3.64, 0] [0.13; 4.56]

BF Bottle neck factor = aneurysm width/neck diameter 0 [−0.01, 5.34] [0.33; 3.86]

BL Bulge location = Distance of plane with largest diameter from neck / height 0.3660 [−0.42, 1.87] [0; 0.91]

Vdiam [cm] Vessel diameter: Diameter of nearest vessel from aneurysm neck −1.7495 [−4.35, 1.42] [0.08; 0.89]

SizeR Size ratio = Aneurysm size/Vessel diameter 0 [−0.37, 0.40] [0.34; 10.7]

VOR Volume to ostium ratio = Aneurysm volume/Area 2D of neck −0.0756 [−1.24, 0.15] [0.01; 17.37]

CR Convexity ratio = Aneurysm volume/Volume of aneurysm’s convex hull 0 [−5.14, 1.96] [0.33; 0.98]

IPR Isoperimetric ratio = Aneurysm area/(Aneurysm volume2/3) 0 [−7.57, 0] [4.09; 6.56]

EI Ellipticity index = 1-(18π)1/3 (V2/3/ S), with V and S referring to the volume and 
area of the aneurysm convex hull, respectively

0 [−6.37, 13.15] [0.22; 0.47]

NSI Non-sphericity index = 1-(18π)1/3 (V2/3/ S), with V and S referring to the 
aneurysm volume and area, respectively

5.4522 [0, 51.15] [0.06; 0.41]

GAA [cm−2] Area weighted average of Gaussian curvature −0.0056 [−0.05, 0] [−2.86; 226.02]

MAA [cm−1] Area weighted average of mean curvature 0 [−4e-3, 0.61] [0.74; 15.56]

GLN L2-Normof Gaussian curvature 0.0634 [0, 0.40] [0.13; 49.95]

MLN L2-Normof mean curvature 5.021 [−3.35, 9.46] [0.1; 0.76]
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Table 3

Definition, observed range/percentage in the data and model coefficients with 95% confidence interval for 

demographic variables and aneurysm location

Variable Definition Coefficient Range/Percentage

Age [years] −0.0211 [−0.03, −0.01] [12; 93]

female −0.1799 [−0.39, −0.04] 78.6 %

male 0.1799 [0.04, 0.39] 21.4 %

ACA Anterior cerebral artery 0.4142 [−0.20, 1.12] 3.49 %

ACOM Anterior communicating artery 1.29 [1.07, 2.06] 13.86 %

BA-DIST-PROX Basilar artery other than tip −0.1418 [−0.90, 0.77] 2.76 %

BA-TIP Tip of basilar artery 0.5282 [−0.10, 1.20] 3.74 %

ICA-ACHOR Internal carotid artery – anterior choroidal −0.2668 [−1.48, 0.48] 2.51 %

ICA-BIF Internal carotid artery bifurcation −0.4154 [−1.15, 0.20] 3.56 %

ICA-CAV Cavernous internal carotid artery −1.2416 [−3.54, −0.79] 7.91 %

ICA-OPH Internal carotid artery – ophthalmic −0.6868 [−1.33, −0.29] 16.86 %

ICA-SHYP Superior hypophyseal segment internal carotid artery −0.191 [−0.76, 0.52] 8.15 %

MCA-BIF Middle cerebral artery bifurcation 0.0979 [−0.21, 0.66] 15.33 %

MCA-DIST-PROX Middle cerebral artery other than bifurcation −1.0289 [−3.04, −0.32] 3.68 %

PCOM Posterior communicating artery 0.9649 [0.68, 1.46] 15.94 %

VA Vertebral artery 0.6771 [0.13, 1.70] 2.21 %
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Table 4

Accuracy of model depending threshold for classification. The TPR is defined as the number of true positives 

divided by all positives (=sensitivity), the FPR as the number of false positives divided by the number of 

negatives (= 1-specificity), the PPV (positive predictive value=precision) as the number of true positives 

divided by the number of true and false positives, the NPV (negative predictive value) as the number of true 

negatives divided by the number of true and false negatives, and the misclassification error as the number of 

incorrect classifications divided by the sample size

Threshold TPR FPR PPV NPV Misclass. Error

0.32 0.77 0.21 0.62 0.89 0.21

0.5 0.59 0.09 0.74 0.84 0.18
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Table 5

Subset of parameters for illustrated cases in Fig. 5

OSImax Vmax [cm/s] NSI MLN LSA (%) Asize [cm] Age [years] gender location

a-I 0.2279 44.3085 0.1362 0.231895 65.7216 0.445136 69 Female ICA-OPH

a-II 0.4675 63.355 0.1687 0.319194 0.433762 1.07229 69 Female ICA-SHYP

b 0.2987 36.478 0.1654 0.432608 87.3457 1.3242 68 Female ICA-OPH

c 0.4396 297.092 0.2725 0.351839 0 0.524571 40 Male ACOM

d 0.3373 289.041 0.3209 0.450463 0.28505 0.846173 42 Male ACOM
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