Skip to main content
Log in

Influence of fiber connectivity in simulations of cardiac biomechanics

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Personalized computational simulations of the heart could open up new improved approaches to diagnosis and surgery assistance systems. While it is fully recognized that myocardial fiber orientation is central for the construction of realistic computational models of cardiac electromechanics, the role of its overall architecture and connectivity remains unclear. Morphological studies show that the distribution of cardiac muscular fibers at the basal ring connects epicardium and endocardium. However, computational models simplify their distribution and disregard the basal loop. This work explores the influence in computational simulations of fiber distribution at different short-axis cuts.

Methods

We have used a highly parallelized computational solver to test different fiber models of ventricular muscular connectivity. We have considered two rule-based mathematical models and an own-designed method preserving basal connectivity as observed in experimental data. Simulated cardiac functional scores (rotation, torsion and longitudinal shortening) were compared to experimental healthy ranges using generalized models (rotation) and Mahalanobis distances (shortening, torsion).

Results

The probability of rotation was significantly lower for ruled-based models [95% CI (0.13, 0.20)] in comparison with experimental data [95% CI (0.23, 0.31)]. The Mahalanobis distance for experimental data was in the edge of the region enclosing 99% of the healthy population.

Conclusions

Cardiac electromechanical simulations of the heart with fibers extracted from experimental data produce functional scores closer to healthy ranges than rule-based models disregarding architecture connectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. http://gforge.icm.jhu.edu.

  2. http://gforge.icm.jhu.edu.

  3. http://iam.cvc.uab.es/portfolio/cardiac-imaging-analysis/.

References

  1. Bishop M, Hales P, Plank G, Gavaghan DJ, Scheider J, Grau V (2009) Comparison of rule-based and dtmri-derived fibre architecture in a whole rat ventricular computational model. In: Functional imaging and modeling of the heart, pp 87–96

  2. Carapella V, Bordas R, Pathmanathan P, Lohezic M, Schneider JE, Kohl P, Burrage K, Grau V (2014) Quantitative study of the effect of tissue microstructure on contraction in a computational model of rat left ventricle. PloS one 9(4):e92792. https://doi.org/10.1371/journal.pone.0092792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Carreras F, Garcia J, Gil D, Pujadas S, Li CH, Suarez-Arias R, Leta R, Alomar X, Ballester M, Pons-Llado G (2012) Left ventricular torsion and longitudinal shortening: two fundamental components of myocardial mechanics assessed by tagged cine-mri in normal subjects. Int J Cardiovasc Imaging 28(2):273–84

    Article  PubMed  Google Scholar 

  4. Casero R, Burton R.A, Quinn T.A, Bollensdorff C, Hales P, Schneider J, Kohl P, Grau V (2010) Cardiac valve annulus manual segmentation using computer assisted visual feedback in three-dimensional image data. In: EMBC, pp 738–741

  5. Ferreira PF, Kilner PJ, McGill LA, Nielles-Vallespin S, Scott AD, Ho SY, McCarthy KP, Haba M, Ismail T, Gatehouse P, Silva R, Lyon A, Prasad S, Firmin D (2014) In vivo cardiovascular magnetic resonance diffusion tensor imaging shows evidence of abnormal myocardial laminar orientations and mobility in hypertrophic cardiomyopathy. J Cardiovasc Mag Res 16(87):1–16

    Google Scholar 

  6. Fritz T, Wieners C, Seemann G (2014) Simulation of the contraction of the ventricles in a human heart model including atria and pericardium. Biomech Model Mechanobiol 13:627–641

    Article  PubMed  Google Scholar 

  7. Gil D, Borras A, Aris R, Vazquez M, Lafortune P, Houzeaux G, Aguado J, Ballester M, Li CH, Carreras F (2012) What a difference in biomechanics cardiac fiber makes. In: STACOM

  8. Gonzalez Tendero A, Zhang C, Balicevic V, Cardenes R, Loncaric S, Butakoff C, Paun B, Bonnin A, Garcia-Canadilla P, Munoz-Moreno E, Gratacos E, Crispi F, Bijnens (2017) Whole heart detailed and quantitative anatomy, myofibre structure and vasculature from x-ray phase-contrast synchrotron radiation-based micro computed tomography. EHJ Cardiovasc Imaging 18:732–41

    Article  Google Scholar 

  9. Gurev V, Lee T, Constantino J, Arevalo H, Trayanova NA (2011) Models of cardiac electromechanics based on individual hearts imaging data. Biomech Model Mechanobiol 10(3):295–306

    Article  PubMed  Google Scholar 

  10. Helm PA, Younes L, Beg MF, Ennis DB, Leclercq C, Faris OP, McVeigh E, Kass D, Miller MI, Winslow RL (2006) Evidence of structural remodeling in the dyssynchronous failing heart. Circ Res 98(1):125–132

    Article  CAS  PubMed  Google Scholar 

  11. Humphrey J (2001) Cardiovascular solid mechanics. Cells, tissues, and organs. Springer, Berlin

    Google Scholar 

  12. Hunter PJ, McCulloch AD, ter Keurs HE (1998) Modelling the mechanical properties of cardiac muscle. Prog Biophys Mol Biol 69(2–3):289–331

    Article  CAS  PubMed  Google Scholar 

  13. Lafortune P, Arís R, Vázquez M, Houzeaux G (2012) Coupled electromechanical model of the heart: Parallel finite element formulation. Int J Numer Methods Biomed Eng 28:72–86

    Article  Google Scholar 

  14. Myerburg RJ, Nilsson K, Gelband H (1972) Physiology of canine intraventricular conduction and endocardial excitation. Circ Res 30(2):217–243

    Article  CAS  PubMed  Google Scholar 

  15. O’Hara T, Virag L, Varro A, Rudy Y (2011) Simulation of the undiseased human cardiac ventricular action potential: model formulation and experimental validation. PLoS Comput Biol 7(5):e1002061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Potse M, Dube B, Richer J, Vinet A, Gulrajani RM (2006) A comparison of monodomain and bidomain reaction–diffusion models for action potential propagation in the human heart. Trans Biomed Eng 53(12):2425–2435

    Article  Google Scholar 

  17. Poveda F, Gil D, Marti E, Andaluz A, Ballester M, Carreras F (2013) Helical structure of the cardiac ventricular anatomy assessed by diffusion tensor magnetic resonance imaging multi-resolution tractography. Rev Esp Cardiaol 66(10):782–90

    Article  Google Scholar 

  18. Santiago A (2018) Fluid Electro Mechanical model of the human heart for supercomputers. Ph.D. Thesis. UPC, Barcelona, Spain

  19. Savadjieva P, Strijkers GJ, Bakermans AJ, Piuze E, Zucker S, Siddiqi K (2012) Heart wall myofibers are arranged in minimal surfaces to optimize organ function. PNAS 109(24):9248–9253

    Article  Google Scholar 

  20. Scollan D, Holmes A, Winslow R, Forder J (1998) Histological validation of myocardial microstructure obtained from diffusion tensor magnetic resonance imaging. Am J Physiol 275:2308–2318

    Google Scholar 

  21. Sebastián R, Zimmerman V, Romero D, Sánchez-Quintana D, Frangi AF (2013) Characterization and modeling of the peripheral cardiac conduction system. IEEE Trans Med Imaging 32(1):45–55

    Article  PubMed  Google Scholar 

  22. Streeter D, Spotnitz H, Patel D, Ross J, Sonnenblick E (1969) Fiber orientation in the canine left ventricle during diastole and systole. Circ Res 24:339–347

    Article  PubMed  Google Scholar 

  23. Teh I, McClymont D, Burton R, Maguire M, Whittington H, Lygate C, Kohl P, Schneider J (2016) Resolving fine cardiac structures in rats with high-resolution dti. Nat Sci Rep 6(30573):1–14

    Google Scholar 

  24. Torrent Guasp F, Ballester M, Buckberg G, Carreras F, Flotats A, Carrio I, Ferreira A, Samuels L, Narula J (2001) Spatial orientation of the ventricular muscle band: physiologic contribution and surgical implications. J Thorac Cardiovasc Surg 122(2):389–92

    Article  CAS  PubMed  Google Scholar 

  25. Toussaint N, Stoeck C, Schaeffter T, Kozerke S, Sermesant M, Batchelor P (2013) In vivo human cardiac fibre architecture estimation using shape-based diffusion tensor processing. Med Image Anal 17:1243–1255

    Article  PubMed  Google Scholar 

  26. Vázquez M, Arís R, Aguado-Sierra J, Houzeaux G, Santiago A, López M, Córdoba P, Rivero M, Cajas JC (2015) Alya red ccm: Hpc-based cardiac computational modeling. In: Selected topics of computational and experimental fluid mechanics pp 189–207

Download references

Acknowledgements

This work was funded by Spanish Projects DPI2015- 430 65286-R, 2017-SGR-1624, the CERCA Programme, the Serra Hunter Programme and the grant BES-2016-078042.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Gil.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical approval

For this type of study, formal consent is not required.

Informed consent

This articles does not contain patient data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gil, D., Aris, R., Borras, A. et al. Influence of fiber connectivity in simulations of cardiac biomechanics. Int J CARS 14, 63–72 (2019). https://doi.org/10.1007/s11548-018-1849-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-018-1849-9

Keywords

Navigation