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Abstract
Purpose Tuberculosis is a major global health threat claiming millions of lives each year. While the total number of tubercu-
losis cases has been decreasing over the last years, the rise of drug-resistant tuberculosis has reduced the chance of controlling
the disease. The purpose is to implement a timely diagnosis of drug-resistant tuberculosis, which is essential to administering
adequate treatment regimens and stopping the further transmission of drug-resistant tuberculosis.
Methods A main tool for diagnosing tuberculosis is the conventional chest X-ray. We are investigating the possibility
of discriminating automatically between drug-resistant and drug-sensitive tuberculosis in chest X-rays by means of image
analysis and machine learning methods.
Results For discriminating between drug-sensitive and drug-resistant tuberculosis, we achieve an area under the receiver
operating characteristic curve (AUC) of up to 66%, using an artificial neural network in combination with a set of shape and
texture features. We did not observe any significant difference in the results when including follow-up X-rays for each patient.
Conclusion Our results suggest that a chest X-ray contains information about the likelihood of a drug-resistant tuberculosis
infection, which can be exploited computationally. We therefore suggest to repeat the experiments of our pilot study on a
larger set of chest X-rays.
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Introduction

Tuberculosis (TB) is a serious worldwide public health
threat [1]. It is an airborne disease that is caused by
mycobacterium tuberculosis (MTB) bacteria, whichwas first
discovered in 1882 [2]. The worldwide TB mortality rate
is decreasing due to a global effort to improve TB control
and treatment. However, even today after the development
of advanced medical treatment and diagnostic technology,
TB is the leading cause of death from infectious disease in
the world. About 9.6 million people are estimated to have
TB, which claimed 1.5 million lives in 2014 alone.

Particularly, worrisome are the drug-resistant forms of
tuberculosis. Multidrug-resistant TB (MDR-TB) is a form of
tuberculosis that is resistant to treatment with one or two of
the first-line anti-TB drugs (isoniazid and rifampicin).MDR-
TB is concerning because it is difficult to diagnose and it
takes more time (often more than two years) and cost to treat
patients. About 3.3% of newTB cases and 20% of previously
treated cases are estimated to have MDR-TB. Globally, the
trend of drug-resistant tuberculosis has remained unchanged
at best [3].

One of the major challenges for controlling MDR-TB
lies in the difficulty in diagnosing drug resistance of TB-
suspected patients during their first visit. Conventionally,
drug susceptibility testing is performed on a sputum sam-
ple to identify the resistant status to several drugs, which
requires a well-equipped laboratory facility and takes four
to six weeks to obtain the laboratory results. The recent
development of the Xpert MTB/RIF, a real-time test based
on polymerase chain reaction (PCR) for genetic mutations
in the MTB genome associated with resistance, specifi-
cally rifampicin (RIF) resistance, has greatly reduced the
laboratory time needed for the detection of MDR-TB [1].
However, the test still produces a large number of incon-
clusive results and its deployment in resource-constrained
settings is expensive. In addition, the test requires a sputum
sample, which can be difficult to obtain, especially from chil-
dren. Therefore, detecting MDR-TB is still a challenge and
the conventional chest CXR (X-ray) remains a valuable tool
in detection, screening and surveillance of MDR-TB, thanks
to its widespread availability.

With the recent advances in imaging technology and com-
putational methods for quantitative imaging, infectious dis-
ease imaging (IDI) has shown promising results in infectious
disease diagnosis. IDI is an interdisciplinary field involv-
ing clinical research of infectious diseases under various
imaging modalities, including CXR, computed tomogra-
phy (CT), positron emission tomography (PET), magnetic
resonance imaging (MRI), and other modalities. One goal
is to leverage radiology for the diagnosis and treatment
of emerging pathogens, epidemics and pandemics. Clini-
cal imaging allows obtaining quantitative information and

applying computer-assisted detection methods for assess-
ing infectious disease severity and response to therapy. IDI,
therefore, offers new ways of diagnosing infectious diseases
effectively and accurately. For example, in H1N1 influenza
diagnosis, computed tomography (CT) imaging of severe
H1N1 contributed to earlier diagnosis and treatment of the
infection by eliminating other possible causes of disease.
For monitoring tuberculosis treatment, PET/CT scans were
computationally evaluated and provided a volumetric assess-
ment of TB-associated abnormalities, which were predictive
of treatment outcomes [4].

We have structured the paper as follows: Background
and previous work section describes the background of our
work on discovering potential radiological features that could
indicate drug resistance. Third section provides information
about the set of CXRs we have acquired for our studies and
presents our methods for lung segmentation, feature com-
putation, and classification. Finally, fourth section shows
our results, followed by a final conclusion summarizing the
paper.

Background and previous work

Drug resistance

Tuberculosis is a curable infection. However, it requires a
long treatment with several drugs (www.tbfacts.org). There
are currently more than 20 drugs in use against TB. The five
most commonly used drugs, which are also called first-line
drugs, are typically used for TB patients without prior TB
drug treatment. This includes the drugs isoniazid, rifampicin,
and three others. It is essential that several TB drugs are being
taken together to avoid becoming resistant to an individual
drug. To avoid drug resistance, it is also very important that
the patient adheres strictly to the treatment regimen over sev-
eral months without interruptions.

The drugs for the treatment of drug-resistant TB are more
expensive and have more side effects. They are grouped
according to their effectiveness and experience of use, and
belong to the so-called second-line drugs, which are the
reserve drugs for treating drug resistance.

A patient with TB is drug-susceptible if the TB bacteria
causing the infection respond to all drugs. If a patient has
contracted drug-resistant TB, either from the direct trans-
mission from another infected person or due to improper
treatment, the TB bacteria will not respond to at least one
of the main drugs. Two main types of drug resistance are
MDR-TB and XDR-TB. MDR-TB, or multidrug resistant
TB, is defined as resistance to at least isoniazid or rifampicin,
which are two of themost effective first-line TB drugs. XDR-
TB, or extensively drug-resistant TB, is caused by bacteria
that, in addition to resistance against isoniazid or rifampicin,
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are resistant to additional drugs, including at least one of
the second-line drugs. These are the two main types of TB
drug resistance, although additional categories are some-
times used depending on the number of drugs that the bacteria
do not respond to, including resistance against individual
drugs and resistance againstmost of the existing drugs. Treat-
ment of the latter is extremely difficult.

According to the latest WHO update on MDR-TB,
there were an estimated 480,000 new cases of MDR-TB in
2015 [3]. Almost 10% of these cases are extensively drug-
resistant (XDR-TB). To date, 117 countries have reported at
least one XDR-TB case.

Previous work

There is evidence that differentiating between MDR-TB and
drug-sensitive TB may be possible in computed tomography
(CT). For example, Yeom et al. [5] found significant corre-
lation of bilateral and multiple findings such as segmental
or lobar consolidation and cavities with primary MDR-TB
patients. Findings such as bilateral consolidations and mul-
tiple cavities were also evident in the CXRs of our MDR-TB
patients,making theman ideal cohort for discrimination anal-
ysis (see “Methods and procedures” section).

Chen et al. [4] correlated PET/CT imaging with treat-
ment outcome in patients with multidrug-resistant TB. They
assessed changes at 2 and 6 months (CT only) in a cohort of
28 subjects with multidrug-resistant TB, who were treated
with second-line TB therapy for 2 years and then followed
for an additional 6 months. CT scans were read semiquanti-
tatively by radiologists and were computationally evaluated
using custom software to provide volumetric assessment
of TB-associated abnormalities. Their results show that CT
scans at 6 months (but not 2 months) assessed by radiologist
readers were predictive of outcomes, and changes in com-
puted abnormal volumes were predictive of drug response at
both time points. In their cohort, some radiologic markers
were more sensitive than conventional sputum microbiology
in distinguishing successful from unsuccessful treatment.
While these results support the potential of imaging scans,
the authors admit that larger cohorts confirming these results
are needed.

An early study by Cha et al. [6] was designed to
describe radiological findings of XDR-TB and to compare
the observed findings with the findings of drug-sensitive and
MDR-TB in non-AIDS patients. Their conclusion was that
by observation of multiple cavities, nodules, and bronchial
dilatation as depicted in CT in young patients, the presence
of MDR-TB or XDR-TB rather than drug-sensitive TB can
be suggested. There was no significant difference in imaging
findings between patients with XDR-TB and MDR-TB.

The result of Cha et al. confirmed the result of an even
earlier study by Kim et al. [7], who observed that patients

with MDR-TB had visible cavity formations on CT and
concluded that multiple cavities suggest the possibility of
MDR-TB. This is also consistent with a study by Chung et
al. [8]. However, Lee et al. [9] concluded later that CT find-
ings of XDR-TB are indeed similar to those of MDR-TB,
but XDR-TB tends to have more extensive consolidation and
tree-in-bud appearance.

Very little work has been done to discriminate between
drug-sensitive and drug-resistant TB automatically by com-
putational means, let alone achieving this for the common
CXR. In an early pilot study, Kovalev et al. [10] observed
statistically significant links between computerized features
of radiological images and drug resistance status of TB
patients. In a second study, the authors achieved an accu-
racy of more than 75% but only when combining CXR with
CT features [11]. The performance for CXR features alone
was much lower.

Methods and procedures

We process CXR images through a pipeline consisting of
lung segmentation, feature computation, and classification.

Image acquisition and annotation

For our study, we are using CXR images from a patient
database of the Republic of Belarus, where MDR/XDR-TB
and HIV/TB are prevalent. In addition to the CXR images of
all patients, the database includes laboratory work and clin-
ical data. All images have been collected as part of Belarus’
compulsory lung screening program, in which the popula-
tion is regularly screened for lung diseases. All patients had
been admitted to the MDR-TB department of the Republic’s
Scientific and Practical Center of Pulmonology and Tubercu-
losis (RSPCPT) with either already diagnosed or suspected
MDR-TB. Each patient received a radiological examination
not long after the date of registration. For image acquisition,
the KODAK Point of Care 260 CR System with the KODAK
Quality Control Software (Version 2.1.2.0.) has been used.

The 135 cases investigated in this paper consist of 45%
sensitive (61) amd 54% MDR (74) cases. The gender dis-
tribution is 59% males (80) and 40% females (55). Among
these patients, 61% (83) are younger than 50 years and 39%
(52) are older than 50 years. Table 1 lists the data stratified
according to age, gender, and type of resistance.

The data given in Table 1 will be the basis for our first
experiment later in the paper, in which we use the initial
CXR of each patient to discriminate between sensitive TB
and MDR-TB. For these data, we measured no significant
difference between the age and gender distributions among
sensitive and resistant TB (z-test, with p = 0.57 and p =
0.77, respectively).

123



1918 International Journal of Computer Assisted Radiology and Surgery (2018) 13:1915–1925

In our second experiment, we include the follow-up CXRs
for each patient. Table 2 lists the number of CXRs of the
second experiment stratified according to age, gender, and
type of resistance. For the data of the second experiment,
we measured again no significant difference between the age
and gender distributions among sensitive and resistant TB
(z-test, with p = 0.19 and p = 0.71, respectively).

Patients who had follow-up visits took additional CXRs
during the visits. Sensitive patients had about four CXRs on
average, and MDR-TB patients had an average of roughly
three CXRs taken in comparison, see Table 3.

The time interval between CXRs is given in Table 4 as
days between follow-up visits. On average, the sensitive TB
patients had about 45-day intervals between visits and the
MDR-TB patients had an average of 38 days between visits.
Follow-up times vary depending on patients.

The sensitive TB patients received the standard WHO
recommended TB regimens: ethambutol (e), isoniazid (h),
rifampicin (r), and pyrazinamide (z) (Table 5).

For the MDR-TB patients, treatment regimens were pre-
scribed based on drug-resistant tests in a microbiology
laboratory. Therefore, each MDR-TB patient’s prescription
differs and is a combination of several TB drugs, excluding
regimens that were resistant. Frequently prescribed treat-
ments were capreomycin (cm), cycloserine (cs), levofloxacin
(lfx), p-aminosalicylic acid (pas), protionamide (pto), and
pyrazinamide (z) (Table 6).Most of these patients were resis-
tant to ethambutol (e), isoniazid (h), and rifampicin (r) of the
standard TB regimen.

Lung segmentation

We detect lung boundaries in our CXRs using an atlas-based
lung segmentation algorithm [12]. The algorithm uses exist-
ing CXRs and their manually delineated lung boundaries

Table 1 Exp. 1—Belarus CXRs stratified by age, gender, and type of
resistance

Age Sensitive MDR

Male Female Male Female

< 50 22 15 26 20

≥ 50 12 12 20 8

Table 2 Exp. 2—Belarus CXRs and follow-ups stratified by age, gen-
der, and type of resistance

Age Sensitive MDR

Male Female Male Female

< 50 72 36 62 47

≥ 50 22 27 45 16

Table 3 Number of CXRs per patient

Sensitive MDR

Maximum number of CXRs 23 17

Minimum number of CXRs 1 1

Mean 3.9 2.6

SD 3.5 2.3

Table 4 Time gaps between CXRs

Gap Sensitive (days) MDR (days)

Mean 44.5 38.4

SD 39.9 26.9

Min 1 1

Max 146 139

Table 5 Frequency of treatment regimens among sensitive TB cases

Treatment regimen Frequency

Ethambutol (e) 61

Isoniazid (h) 61

Rifampicin (r) 61

Pyrazinamide (z) 61

Table 6 Frequency of treatment regimens among MDR-TB patients

Treatment regimen Frequency

Amikacin (am) 11

Amoxicillin/clavulanate (amx_clv) 7

Capreomycin (cm) 52

Cotrimoxazol (c) 2

Cycloserine (cs) 70

Ethambutol (e) 7

Isoniazid (h) 2

Kanamycin (km) 9

Levofloxacin (lfx) 60

Linezolid (lzd) 1

Moxifloxacin (mfx) 3

Ofloxacin (ofx) 9

p-aminosalicylic acid (pas) 63

Protionamide (pto) 71

Rifampicin (r) 2

Pyrazinamide (z) 53

as models and estimates the unknown lung boundary of
a patient’s CXR by registering the existing models to the
patient’s CXR. As models, we use our public CXR dataset
with reference lung boundaries [12,13]. For a patient CXR,
the algorithm first finds the most similar CXRs in the model
set. We measure the similarity between CXRs by compar-
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Fig. 1 Two CXRs with their detected lung boundaries

ing the horizontal and vertical intensity histograms, which
serve as rough shape descriptors of the lung, using the Bhat-
tacharyya distance as a similaritymeasure. Themain purpose
of measuring the similarity is to limit the actual registration
to the most similar models in order to reduce computational
costs. After the model selection, we compute the correspon-
dences between the model CXRs and the patient CXR. To do
so, we create a correspondence map by first describing the
patient CXR using local image features and then finding the
most similar locations with a matching algorithm, following
the SIFT flow approach [14]. The SIFT flow algorithm mod-
els local gradient information of the observed image using
the scale-invariant feature transform (SIFT) [15]. Once we
have calculated the SIFT features, the registration algorithm
computes pixel-to-pixel correspondences by matching the
SIFT features. The computed map of corresponding pix-
els between images then serves as a transformation matrix
that we use to generate the approximate lung model for the
patient CXR. We have shown that this algorithm produces
state-of-the-art results for lung boundary detection on the
public JSRT set [16], among others. For more details about
the algorithm, we refer to [12]. Figure 1 shows two examples
of lung boundaries detected by our method.

Feature computation

For our classification experiments, we use two different fea-
ture sets as described in the following. The first set is based
on color, shape, and texture, whereas the second set is based
on edge orientation.

Color, shape, and texture features To describe visual patterns
indicating drug resistance or drug sensitivity in a segmented
lung field, we use a feature set that we have successfully
used in [17] to discriminate between TB-infected and unin-
fected lungs. It is a combination of shape, edge, and texture
descriptors [18]. For eachdescriptor,we compute a histogram
that shows the distribution of the different descriptor values

across the lung field. Each histogram bin serves as a feature,
and all features of all descriptors combined represent the fea-
ture vector input to a classifier. The following is a list of all
descriptors we are using, with each descriptor quantized into
32 bins (see also [19–21]):

– Intensity histograms (IH)
– Gradient magnitude histograms (GM)
– Shape descriptor histograms (SD) [22]

SD = tan−1
(

λ1

λ2

)
, (1)

where λ1 and λ2 are the eigenvalues of the Hessian
matrix, with λ1 ≤ λ2.

– Curvature descriptor histograms (CD) [22]

CD = tan−1

⎛
⎝

√
λ21 + λ22

1 + I (x, y)

⎞
⎠ , (2)

with 0 ≤ CD ≤ π/2, where I (x, y) denotes the pixel
intensity for pixel (x, y). The normalization with respect
to intensity makes this descriptor independent of image
brightness.

– Histogram of oriented gradients (HoG) is a descriptor
for gradient orientations weighted according to gradient
magnitude [22,23].

– Local binary patterns (LBP) are texture descriptors that
code the intensity differences between neighboring pixels
by a histogram of binary patterns, which are generated
by thresholding the relative intensity between all pixels
and their neighboring pixels [24,25]. LBP are among the
most successful features in image analysis and often used
in combination with HoG [19,20,22].

With these six descriptors, our overall number of features is
6 ∗ 32 = 192. The eigenvalues of the Hessian matrix needed
for the shape and curvature descriptors in Eqs. 1 and 2 were
computed using amodification of the multiscale approach by
Frangi et al. [26,27]. We first smooth the lung region using a
Gaussian filter G(x, s) at each pixel x and different scales s
(s = 2, 4, 6, . . . , 20) and then compute the eigenvalues of
the Hessian matrix on different scales, which captures the
second-order characteristics.

To capture the visual features of drug resistance,we imple-
ment the following filter F that responds to spherical shapes,
using the Hessian eigenvalues λ1 and λ2:

F = 1 − e−√
k·|λ1∗λ2|. (3)

The larger the eigenvalues, the larger the filter response.
We use the eigenvalues of the scale resulting in the largest
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response to compute the shape and curvature descriptors
above [17].

We also use Pyramid Histogram of Oriented Gradients
(PHoG), which is a popular region descriptor in many object
recognition systems [28–31]. PHoG represents the region by
its local shape and spatial layout of the shape. Spatial layout
is preserved by tiling the image into small patches at multiple
resolutions. Figure 2 illustrates three-level PHoG computa-
tions for a sample lung CXR image.

Each candidate region is divided into a finer spatial grid
like a quad-tree. At the lowest level of the pyramid (L0), a
coarse histogram descriptor encodes the entire region, while
finer-region grids are covered at higher-resolution pyramid
levels. The dimension of the concatenated histogram is
K

∑L
l=0 4

l , where K is the number of bins and L is the num-
ber of pyramid levels. For our experiments, we computed a
three-level spatial pyramid of HoG with eight bins leading
to a feature vector of dimension 680.

Classification

To discriminate between drug-resistant and drug-sensitive
TB, we test different classifier architectures, which we list
in the following.

Support vector machine We use a binary linear support vec-
tor machine (SVM), which classifies the computed feature
vectors into one of the natural two classes, sensitive or
resistant [32,33]. The SVM computes the best separating
hyperplane, which is the hyperplane with the largest distance
to the nearest training data point of any class, between the
feature vectors of both classes, as presented in a training set.
The advantage of an SVMclassifier compared to other recent
classification methods, such as deep learning in particular, is
that it can achieve a very good performance when trained
on a small training set. It does not need as many training
samples as required by deep learning for example. Math-
ematically, the majority of the feature vectors representing
lungs with manifestations of drug resistance will be on the
one side of the hyperplane, while feature vectors for lungs
with drug-sensitive TB will be on the other side. Therefore,
we are using the signed distance to the hyperplane as our
confidence in a lung showing signs of drug resistance.

Artificial neural network (ANN) We used MATLAB stan-
dard pattern recognition neural network which is a two-layer
feedforward network with a sigmoid transfer function in the
hidden layer and a softmax transfer function in the output
layer. The number of hidden neurons is comparable with the
feature vector size.

Deep learning Deep learning has recently become a very
popular classification scheme in medical applications and
computer-aideddiagnosis (CAD) inparticular [34,35]. It usu-
ally requires very large training sets but can often outperform
traditional classification approaches [36]. It is an extension
of traditional artificial neural networks in that networks typ-
ically have deeper structures with different types of network
layers. We run deep learning experiments with both a pre-
trained network and a customized network.

– VGG-v16 For our pre-trained network, we use the VGG-
v16 network architecture, which was introduced by
Simonyan and Zisserman in 2014 for image classifica-
tion [37]. It is characterized by its simplicity, using only
33 convolutional layers stacked on top of each other in
increasing depth. Reducing volume size is handled by
max pooling. Two fully connected layers, each with 4096
nodes, are then followed by a softmax classifier. The
VGG-v16 has been pre-trained on more than a million
images and has therefore learned rich feature representa-
tions for a wide range of images. We train this network
and adapt it to our data, which is also called transfer
learning.

– CNN For our customized network, we follow a general
network architecture for convolutional neural networks.
Our network starts from a convolutional layer, which
convolves the input feature maps with a number of con-
volutional kernels and yields a corresponding number
of output feature maps. In order to perform a nonlin-
ear transformation from the input to the output space, we
adopt the rectified linear unit (ReLu) nonlinearity for each
convolution [38]. Following each convolutional layer, a
max-pooling layer is introduced to select feature sub-
sets. The last convolutional feature map is connected to
two fully connected layers with 512 and 2 hidden units,
respectively. Between the two fully connected layers, we
use a dropout layer with a dropout ratio of 0.4 to reduce
overfitting (Fig. 3).

Results

In our first experiment, we test our classifiers on the
135 patients from Belarus, including 61 CXRs from patients
with drug-sensitive TB and 74 CXRs from patients with
MDR-TB and no follow-up CXRs.

In particular, we list the AUC for six different classifiers,
namely theANNwith our shape and texture features, our cus-
tomized CNN, SVM with shape and texture features, ANN
with PHoG, SVMwith PHoG, and a classifier based on a pre-
trained VGG-v16 network (Table 7). The ANN with shape
and texture features shows the best performance on Experi-
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Segmented Lung Grad. Magnitude Grad. Orientation Edges

Level0 Level1 Level2 Concatenated 
Histogram

Lung CXR Computed Lung Mask

Fig. 2 PHoG feature computation for CXR

Table 7 Area under the ROC
curve (AUC) computed for six
different classification methods
using fivefold cross-evaluation

Experiment 1 (%) Experiment 2 (%)

ANN_Shape_Texture_Fts 65 66

CNN 56 62

SVM_Shape_Texture_Fts 57 58

ANN_PHoG 55 59

SVM_PHoG 50 61

VGG-v16 52 57

ment 1, with an AUC of 65%, whereas the other classifiers
provide amuch lower performance. The traditionalANNout-
performs the customized CNN network, which we attribute
to the small training set, which has been a known problem of
large deep learning networks with many variables.

Table 8 shows the accuracy and Fmeasure for the ANN
classifier trained with shape and texture features based on
fivefold cross-evaluation. The results for Experiment 1 are
on the left-hand side of Table 8. For each fold, Table 8
reports the number of true positives (TP), false positives
(FP), true negatives (TN), false negatives (FN), accuracy,
and Fmeasure, where accuracy and Fmeasure are computed as
follows:

Accuracy = TP + TN

TP + FP + TN + FN
, (4)

Fmeasure = 2 × Precision × Recall

Precision + Recall
, (5)

Precision = TP

TP + FP
, Recall = TP

TP + FN
. (6)

According toTable 8,we achieve an average accuracy of 60%
and an average Fmeasure of 62% for the ANN classifier, with
shape and texture features, for Experiment 1.

The left-hand side ofFig. 4 showsour classificationperfor-
mance for the first experiment,measured as the area under the
receiver operating characteristic curve (AUC) for the ANN

123



1922 International Journal of Computer Assisted Radiology and Surgery (2018) 13:1915–1925

Fig. 3 Our customized CNN architecture for chest CXR classification.
The numbers above the cuboid indicate the dimensions of the feature
maps. The numbers below the green dotted lines represent the convo-

lutional kernel size and the size of the max-pooling region. The output
layer is a softmax layer that predicts the probability of drug sensitivity

Table 8 Accuracy and Fmeasure for the ANN classifier and fivefold cross-evaluation

Experiment one Experiment two

TP FP TN FN Accuracy Fmeasure TP FP TN FN Accuracy Fmeasure

Fold 1 14 1 7 5 0.78 0.82 29 12 19 8 0.71 0.74

Fold 2 7 8 6 6 0.48 0.50 19 15 17 10 0.59 0.60

Fold 3 6 8 7 6 0.48 0.46 13 17 33 8 0.65 0.51

Fold 4 10 5 9 3 0.70 0.71 23 11 19 17 0.60 0.62

Fold 5 9 6 6 6 0.56 0.60 16 15 16 10 0.56 0.56

Total/avg 46 28 35 26 0.60 (avg) 0.62 (avg) 100 70 104 53 0.62 (avg) 0.61 (avg)

classifier with shape and texture features. Due to the smaller
training and test set size in Experiment 1, the ROC curves in
Fig. 4a have a staircase shape and vary largely. For Experi-
ment 1, Table 9 lists the results of theANNclassifier on shape
and texture features, including AUC and accuracy (ACC),
separated according to gender and age.

In a second experiment, we add the follow-up CXRs for
all patients to the set, which increases the number of CXRs
to 327, including 157 CXRs with drug-sensitive TB and
170 CXRs with drug-resistant TB (MDR). Table 2 lists the
numbers of CXRs stratified according to age, gender, and
resistance for Experiment 2. The right-hand side of Table 7
shows the AUC results of each of our classifiers for Exper-
iment 2. Again, the ANN with shape and texture features
performs the best, with an AUC of 66%. This result differs
only little from the performance in the first experiment, indi-
cating that including follow-up CXRs does not add more
information for discriminating between sensitive and MDR-
TB.

On the right-hand side of Table 8, we list the accuracy and
Fmeasure for the ANN classifier trained with shape and tex-
ture features and fivefold cross-evaluation in Experiment 2.
Similar to Table 7, the results are very close to the results
observed for Experiment 1.

On the right-hand side of Fig. 4, we show the ROC curves
for theANNclassifier for each fold in the second experiment.
Compared to the curves on the left-hand side from Experi-
ment 1, the variance is much lower due to the larger training
set including follow-up CXRs.

Finally, Table 10 presents the AUC and accuracy for the
ANN classifier trained with shape and texture features in
Experiment 2, and stratified according to gender and age.

Conclusion

We investigate the possibility of using the conventional CXR
to discriminate between drug-sensitive and drug-resistant
forms of TB. For our experiments, we use different clas-
sifiers and features, including shape and texture features that
have provided good results for computer-aided TB screen-
ing in CXRs, which assures us that the features we use
can pick up TB-relevant textures and shapes in the lung
field.

We perform two experiments: The first experiment
includes only the initial CXR of each patient, whereas in the
second experiment, we also include the follow-up CXRs for
each patient. For both experiments, we train our classifiers
and evaluated them by fivefold cross-evaluation. As features,
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Fig. 4 ROC curves for drug-sensitive TB vs MDR-TB classification without (left) and with follow-up CXRs (right) using ANN with shape and
texture features

Table 9 ANN performance evaluation using texture and shape features
for Experiment 1, with data stratified according to age and gender

#images AUC (%) ACC (%)

Exp. 1 (ANN+ features)

Female 55 60 58

Male 80 63 56

Age < 50 83 61 55

Age ≥ 50 52 71 66

Table 10 ANN performance evaluation using texture and shape fea-
tures for Experiment 2, with data stratified according to age and gender

#images AUC (%) ACC (%)

Exp. 2 (ANN + features)

Female 126 61 55

Male 201 71 66

Age < 50 217 68 60

Age ≥ 50 110 57 55

we use our established set of texture and shape features and
the PHoG descriptor. The best performance is achieved by a
traditional neural network classifier (ANN) in combination
with shape and texture features, which results in an AUC
of 65% for the first experiment and 66% for the second
experiment. We also experimented with two deep learning
networks, a pre-trained VGG-v16 network and a customized
convolutional neural network (CNN). Both networks do not
perform better than our ANN. We attribute this to our rela-
tively small training set size, which poses a problem for deep
learning networks with many variables.

For both experiments, we stratified the data according to
gender and age and present the corresponding AUC values
and accuracies of our best performing ANN classifier.

Our approach relies solely on 2D CXR features and is in
line with the few publications in the literature that can only
report higher performance when including 3D information
from CTs. In summary, our experiments provide evidence
that automatic discrimination between drug-sensitive and
drug-resistant TB can be possible in the conventional chest
CXR. Generally speaking, automated screening for drug
resistance in radiographs is still an open problem. Our results
indicate that CXRs contain information about drug resis-
tance. Describing the nature of this information will be the
subject of future research. We can already say that discrim-
inating between drug-resistant TB and drug-sensitive TB
based on a CXR alone is difficult, and amuch harder problem
than detecting TB for which we obtain higher performance
values. To obtain better results, it is therefore very promising
to repeat this pilot study on larger training sets.
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