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Abstract
Background Radial 2D MRI scans of the hip are routinely used for the diagnosis of the cam type of femoroacetabular
impingement (FAI) and of avascular necrosis (AVN) of the femoral head, both considered causes of hip joint osteoarthritis in
young and active patients. A method for automated and accurate segmentation of the proximal femur from radial MRI scans
could be very useful in both clinical routine and biomechanical studies. However, to our knowledge, no such method has been
published before.
Purpose The aims of this study are the development of a system for the segmentation of the proximal femur from radial
MRI scans and the reconstruction of its 3D model that can be used for diagnosis and planning of hip-preserving surgery.
Methods The proposed system relies on: (a) a random forest classifier and (b) the registration of a 3D template mesh of the
femur to the radial slices based on a physically based deformable model. The input to the system are the radial slices and the
manually specified positions of three landmarks. Our dataset consists of the radial MRI scans of 25 patients symptomatic of
FAI or AVN and accompanying manual segmentation of the femur, treated as the ground truth.
Results The achieved segmentation of the proximal femur has an averageDice similarity coefficient (DSC) of 96.37±1.55%,
an average symmetric mean absolute distance (SMAD) of 0.94±0.39 mm and an average Hausdorff distance of
2.37±1.14 mm. In the femoral head subregion, the average SMAD is 0.64±0.18 mm and the average Hausdorff distance is
1.41±0.56 mm.
Conclusions We validated a semiautomated method for the segmentation of the proximal femur from radial MR scans. A
3D model of the proximal femur is also reconstructed, which can be used for the planning of hip-preserving surgery.

Keywords Radial imaging of the hip · Proximal femur · 3D reconstruction · Segmentation · Random forest · Deformable
model
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Introduction

Femoroacetabular impingement (FAI) and avascular necrosis
of the femoral head (AVN) are known causes of osteoarthri-
tis of the hip joint in young and active patients [1]. FAI has
been described in [2] as a biomechanical entity that origi-
nates from anatomical abnormalities of the proximal femur
and/or the acetabulum which manifests itself with decreased
range ofmotion and pain [3–7]. FAI is themain cause of early
onset osteoarthritis in non-dysplastic hips [4]. In the cam type
of FAI, anatomical abnormalities are observed only on the
femoral head without any pelvis involvement. On the other
hand, in AVN the blood flow to the femoral head is inter-
rupted, which can progressively lead to the collapse of the
hip. A lot of joint-preserving forms of treatment have been
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developed in an attempt to slow or reverse its progression,
as it usually affects young patients [1, 8]. MRI has been rec-
ognized as an important assisting tool for the diagnosis and
the assessment of FAI and AVN as, in addition to the non-
ionizing nature of its radiation, MRI can capture the vascular
status of the femoral head [9–12]. Moreover, as MR scan-
ners typically have the capability to directly scan planes of
arbitrary orientation, it is possible to acquire images perpen-
dicular to the curvature of the acetabulum, as visualized in
Fig. 1. Such a scanning protocol is often referred to as radial
imaging of the hip. The appeal of using radial scans over 3D
MRI for image-assisted diagnosis is the reduced scanning
time, as a typical radial scan of the hip consists ofmuch fewer
slices. Indeed, acquisition of 3D MR images is typically not
part of the clinical routine, as MR scanning time tends to
be a resource high in demand. Additionally, radial imaging,
using a gadolinium-enhanced scanning protocol [13–16], is
considered the gold standard for diagnosis of FAI and AVN
[1, 17, 18].

In addition to the value of MRI in diagnosis, MR-based
3D models of the femur have recently been shown to be as
accurate as CT-based ones [19, 20]. Such 3Dmodels form an
essential part of the planning of hip-preserving surgeries, and
they are also valuable in conducting motion analysis studies.
In particular, surgical correction of cam-FAI or AVN is chal-
lenging and requires exact preoperative planning [5–8]. The
reconstruction of such a 3Dmodel requires the segmentation
of the femoral area in every slice, a task which, if performed
manually, is very tedious. In the case of MR radial scans, the
effort required is much lower. Still, the segmentation result
is susceptible to inter-observer variability. Moreover, radial
scans can suffer from a crosstalk artifact at the intersection
of all the images and it can be unclear how to segment the
proximal femur at the affected locations.

For these reasons, an automated and accurate method for
the segmentation of the proximal femur in radial scans of
the hip has the potential to increase the value of this type of
sequence in both clinical routine and biomechanical studies.
In this work, we present a novel method for this task. The
proposed method registers a 3D template mesh of the femur
to the radial slices based on a physically based deformable
model. The registration process utilizes the pixel-wise pre-
dictions of a classifier. An evaluation study is conducted on
a dataset of 25 radial scans of symptomatic patients.

Related work

There are a few published methods on the problem of the
automatic segmentation of the proximal femur from 3D
MR images. In [21], the authors applied both multi-atlases
and active shape models (ASMs) for the segmentation of
the proximal femur and the hip bone. In [22–25], differ-
ent methods based on deformable models were proposed: In

Fig. 1 Visualization of the 3D geometry of a radial scan along with the
registered 3D model, shown from different 3D viewpoints. In a–d, the
same image is highlighted with a green overlay. For clarity of visual-
ization, only two, three and seven of the total 14 images of the radial
scan are shown in a–c, respectively. In d, it is can be observed that all
the images share a common axis and that their angular displacements
around their common axis are uniformly distributed around the circle.
Finally, in e and f, the two images of a are shown along with the reg-
istered 3D model, as generated by the proposed method. Subfigures e
and f were created using the 3D Slicer software [41]

[22], a robust multi-resolution statistical shape model (SSM)
method for the segmentation of bones in small field of view
(FOV) was presented and results for the case of the femur
and of the hip bone were reported. In [23], a general seg-
mentation method for both muscles and bones was presented
and an evaluation for femur segmentation was conducted.
In [24], user-specified landmarks were also utilized for the
segmentation of the proximal femur. In [25], weighted shape
prior was introduced to the deformable model. Whereas all
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Fig. 2 Summary of the pipeline. a The images of a radial scan are pre-
processed, and they are aligned according the common axis of the scan;
b the random forest classifier makes a prediction for every pixel of the
images on whether it corresponds to femur. The generated probability

maps are rotated back to the original orientations; c a 3D template mesh
of the femur is registered to the radial images using the generated prob-
ability maps to drive the registration process and the positions of the
three landmarks to initialize it

the previous methods are model-based, in [26] the authors
presented a purely classification-based approach, by propos-
ing a 3D deep learning network architecture based on u-net
for this classification task.

All themethodsmentioned above assume that 3DMRdata
are available. To the best of our knowledge, no method for
the segmentation of the proximal femur has been proposed
that relies solely on radial scans. Turning our attention to
different organs, we can find the literature on the segmen-
tation of heart from similar radial images, for example, [27,
28]. As summarized in [27], these methods tend to have an
interpolation part and a segmentation part. Sometimes, the
slices are segmented independently from one another and the
3D surface is interpolated by the 2D contours. Alternatively,
often a 3D volume is firstly interpolated from the 2D slices,
and then, some segmentation method, usually model based,
is applied on the 3D volume.

The geometric feature that we are using in the classifica-
tion stage is similar to those of the auto-context framework
[29], especially to the distance-based features introduced
in [30]. The main difference with these works is that they
employ at least one prior regression or classification layer in
order to locate certain landmarks or objects. In the present
work, we attempt to directly take advantage of prior knowl-
edge concerning the orientation of the images without a prior
localization step.

Method

The input to the pipeline is a set of radial MR images of the
hip. Their FOV includes the hip joint and the upper extremity
of the femur. In the following sections, we will be referring
to such an MR sequence as a radial scan or simply a scan.
For the individual planes of a radial scan, we will use the
term images.

Unlike typical MR scans, the images of a radial scan are
not parallel to each other. Instead, they lay on oblique planes,
acquired in a radial (rotating) fashion along the axis of the
femoral neck. Their acquisition protocol is described in detail
in [13], which specifies 14 images per scan. Following this
protocol, the images are gadolinium-enhanced. The geomet-
ric arrangement is visualized in Fig. 1, which presents an
example radial scan from different 3D viewpoints.

The proposed pipeline consists of: (a) a preprocessing
step, where the input images are aligned; (b) a classification
step with a random forest classifier that estimates the prob-
ability of every pixel to belong to femur; (c) a deformable
model registration stage which fits a 3D template mesh to
the input images and the generated probability maps. A sum-
marizing diagram is presented in Fig. 2. Each component is
described in the following sections.
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Fig. 3 Alignment of the images
with respect to the common axis
and visualization of the
geometric feature. From a to c:
An example input image; the
same image, with the ground
truth segmentation of the femur
highlighted with a blue overlay;
the appearance of the image,
when it is aligned with respect
to the common axis (the image
has been rescaled on this figure
to make the figure clearer). The
crosstalk artifact, occurring on
the common axis of all the
images and typical for MR radial
scans, can be easily observed. d
The image of subfigure (a), with
the common axis pinpointed
with a blue line. e The aligned
image of subfigure (c), with the
common axis pinpointed with a
blue line. The unit vector ŝ is the
direction vector of the common
axis. Since the image is aligned,
ŝ is parallel to the vertical axis.
The length of the yellow dotted
line is the value of the geometric
feature g, computed at the point
x

Preprocessing

At the preprocessing stage, two operations are carried out:
(a) The intensities of the images are normalized by histogram
matching to a reference image, and (b) the images are rotated
so that the common axis is vertical on every aligned image.

The intensity normalization is performed because the
range of the intensities of an image can be different for dif-
ferent radial scans, which might affect the performance of
the intensity-based features that are used by the random for-
est classifier. The matching is performed using a standard
algorithm for histogram matching for MR images [31].

In order to reduce the variability of the appearance of the
femur in the images and to assist the classification stage that
follows, the images are rotated so that the common axis is
always vertical. This is accomplished in the following man-
ner: Firstly, the common axis is retrieved by computing the
intersection of any two images in the scan. Then, the ori-
entation of the common axis with respect to every image is
calculated. The desired rotation angle is the opposite of the
angle of the computed orientation. The result of this align-
ment procedure is shown in Fig. 3.

The locations of three anatomical landmarks are also spec-
ified manually by the user, to be used for the initialization of
the deformablemodel registration procedure of the last stage.

Random forest classifier

The automated segmentation is based on a binary, pixel-wise
classifierwhichmakes a probabilistic estimate for every pixel
of an aligned image on whether it belongs to the femur area
or not. These two classes of pixels will be referred to as
foreground and background in the following sections.

A random forest is utilized for the binary classification.
In addition to standard, intensity-based features, a geomet-
ric feature is used that attempts to introduce spatial context
information to the classification process. For the description
of these features that follows, it is assumed that an image
I :Ω ⊂ R

2 → R is given, with the domain Ω correspond-
ing to the pixel coordinates of the image. Since the classifier
treats the images of a scan independently from each other, we
ignore the fact that the pixels correspond in fact to 3D points
in the world coordinate system and, for this subsection, we
treat the images as 2D objects.
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Intensity-based features

A standard type of intensity-based features is utilized, the
same way as in [32, 33, 44–46, 49]. These features are based
on the mean intensity value over displayed boxes. In more
detail, if x ∈ Ω is a reference point, the following features
are considered:

f (x; B1, B2, o1, o2, s) �
∑

y∈B1 I (x + o1 + y)

|B1|
− s

∑
y∈B2 I (x + o2 + y)

|B2|
where s ∈ {0, 1}, o1, o2 are 2D offsets, B1, B2 are 2D rect-
angular boxes and |B1|, |B2| are their areas.

As in the previously mentioned publications, a pool of
these features is sampled randomly from a predefined range
of values for B1, B2, o1, o2 at the beginning of the random
forest training. The interested reader is referred to [46] for a
detailed description of this family of features and how they
are integrated in the random forest classification framework.

A geometric feature

In order to improve the performance, we take advantage of
prior knowledge concerning the geometric arrangement of
the images in a scan. As described earlier, the images of a
radial scan of the proximal femur intersect on one axis in
the 3D world coordinates space which passes close to the
femoral head center and the femoral neck center. This prior
knowledge is incorporating in the classifier through a feature
which is simply the distance of the reference point to the
common axis. This can be expressed as:

g(x; s) �
∥
∥
∥(x − s0) −

(
(x − s0)T · ŝ

)
ŝ
∥
∥
∥
2

where s0 is a point of the common axis and ŝ is the direction
vector of the common axis. This ismore intuitively illustrated
in Fig. 3e. As it can be seen on this figure, this distance is
calculated on the aligned image, so the unit vector ŝ is simply
equal to [0, 1]T and the computation above simplifies to just
the subtraction of the y coordinate of s from the y coordinate
of x.

Deformable model fitting

In the last stage, a 3D templatemesh of the femur is registered
to the radial images based on a physically based deformable
model. The implemented deformable model framework is
partially based on our previous work of physically-based
simplex meshes [22, 34]. In this framework, mesh vertices
are considered as lumped mass particles whose motion is
driven by forces and which follows Newtonian dynamics.

By carefully crafting the forces, the deformable model will
reach an equilibrium position corresponding to the structure
to segment.

The state of a particle i at time t is described by its position
Pi (t) and velocity P

′
i (t). Following Newton’s law of motion,

the particle acceleration P
′′
i (t) is related to the inverse of the

particle mass, expressed by its inertia matrix Li , and the sum
of forces Fi exerted: P

′′
i (t) � Li Fi (t). The particle motion

is thus described by a differential equation system which can
be linearized and solved according to an integration scheme.
We chose the implicit Euler scheme as described in [35]:

P(t + dt) � P(t) + P ′(t + dt)dt

P ′(t + dt) � P ′(t) + LT H−1Y

H � LT − L
∂F

∂P ′ L
T dt − L

∂F

∂P
LT dt2

Y � LF(t)dt + L
∂F

∂P
P ′(t)dt2

This scheme remains very stablewhen using large integration
time steps and can be efficiently implemented by using the
conjugate gradient algorithm and by exploiting the sparsity
of the system matrix H . A simulation step consists of: (a)
computing forces and their derivatives and (b) updating the
next particle state by solving the differential equation system.
For a vertex at position Pi , a force fi is commonly modeled
as the force of a Hookean spring which will attract the vertex
toward a target vertex position Ri :

fi �∝i (Ri − Pi )

where ∝i is the weighting force coefficient.
A key difference with respect to our previous framework

[22, 34] is that we do not rely anymore on simplex meshes.
Weuse instead standard triangularmeshes due to thematurity
and availability of many geometrical modeling techniques
for this category of meshes. As a result, we devised new
approaches in the framework, as detailed in the following
paragraphs.

Internal forces

Internal forces regulate mesh deformation by enforcing
smoothness and shape similarity. Shape similarity is enforced
by local andglobal shape forces. Smoothness and local shape
forces focus on a local geometric description of a vertex with
respects to its neighbors, while strong shape forces are based
on statistical shape models [36] and affect the mesh globally.

Smoothing and local shape forces

Contrary to triangular meshes, simplex meshes are char-
acterized by constant vertex connectivity, simplifying the

123



550 International Journal of Computer Assisted Radiology and Surgery (2019) 14:545–561

computation of various local geometrical properties thatwere
used in our previous framework.

Instead of relying on the dual transformation between sim-
plex and triangular meshes, we choose in the present work to
model the vertex local geometrywith theMeanValue Encod-
ing (MVE) of [37]. In MVE, for each vertex at position Pi a
local planeΠi (ni , di ) is built based on themi neighbor vertex
positions Q j , j ∈ Ni . The plane normal ni is computed as an
area-weighted sum of the neighbor vertex normals, where the
area ai of a vertex i is computed from the areas Aik of the tri-
angles sharing the vertex: ai � ∑

Aik/3. The plane position
di is expressed as an average distance from the origin:

di � − 1

mi

∑

j∈Ni

ni · Q j

Each vertex position is expressed in terms of tangential and
normal componentswith respect to the local plane, by a series
of MVE parameters. These parameters provide an efficient
encoding of local geometry at each vertex, robust to degen-
erate situations such as nearly collinear neighbor vertices.

MVE parameters can be precomputed for the mesh at
t � 0, providing a “snapshot” of the mesh shape. Then, dur-
ingmesh deformation, for each vertex position Pi a decoding
process computes the position Ri that would be expected
based on the MVE encoding. The local shape force uses this
position Ri as the target position to enforce local shape geom-
etry.

The MVE local geometry can also be used to design
a smoothing force preventing excessive local deformations
such as spokes. The target point Ri for vertex i of the smooth-
ing force is:

Ri �
∑

j∈Ni

a j
(
Q j + h j

)
/

∑

j∈Ni

a j

where h j denotes the height of the vertex j in its local geom-
etry, i.e., the normal component of position Pj with respect
to its local plane Π j . This smoothing is similar to Laplacian
smoothing which uses the vertex barycenter, but it addition-
ally reduces the shrinking effect of the Laplacian smoothing
by including the weighted height.

Global shape force

In [22], we presented the use of statistical shape models
(SSM), expressed as point distribution models [36], to cre-
ate the global shape force. The idea is to compute a shape S
based on the SSM which is the closest in least squares sense
to the currentmeshM . This is based on an iterative procedure
described in [36] which estimates the best alignment trans-
form and shape parameters of the SSM yielding the closest

shape S. The vertices of S are eventually used as the target
vertices Ri for the global shape forces (Fig. 4).

External forces

External image forces use image cues to guide the deforma-
tion of the mesh and are specifically designed based on the
modality and nature of the images. In this work, we use both
pixel intensities of theMR images and the values of the prob-
ability maps of the random forest classifier. Without any loss
of generality, we will refer to any of them as an image with
intensities I .

Given the 3D plane of a radial image, we select the mesh
vertices P∗

i whose projection on the plane L∗
i is within the

image bounds and whose distance to the plane is below a
very small threshold l (Fig. 5a). Then, the normals of the
vertices P∗

i are projected on the plane as 2D vectors n∗
i .

In the plane, we sample 2W + 1 values every s mm along
the normal direction n∗

i in an interval centered on L∗
i . The

sampling position u where the intensity gradient ∇ I (u) has
(i) the greatest magnitude but also (ii) the closest direction to
the projected normal n∗

i is chosen for the force target point
Ri (Fig. 5b):

Ri � argmax ε ∗ ∇ I (u) · n∗
i

where ε equals +1 or -1 depending on whether the normals
need inversion (in the case of probabilitymaps, outwardmesh
normals and image gradients will have opposite directions).
This force will only affect a subset of mesh vertices P∗

i due
to the small FOV of the radial images. The remaining ver-
tices are ignored during the alignment procedure and the least
square minimization of the global shape force computation
[22].

Regularization

Internal forces play an important role in preventing incor-
rect mesh deformations due to image forces affected by
image noise or neighbor anatomical structures. However,
additional regularization strategies are generally required to
bring robustness and tackle possible numerical issues.

First,we adopt the samemulti-resolution strategy depicted
in [22], where several resolutions of the mesh are succes-
sively used during the mesh deformation. We also use a
coarse-to-fine SSM scheme, by progressively increasing the
SSM“locality” [34] during the process. The locality is related
to the alignment type of the SSM, and it is an intuitive notion:
A rigid SSM captures global shape changes while an affine
or a similarity SSM will better express local variations.

Second, we used a damping force fi � − ∝i P
′
i to pre-

vent possible instabilities of the integration scheme.Thismay
occur during the approximation of the force derivatives or
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Fig. 4 Probability maps with
and without using the geometric
feature. a Three testing images;
b the probability maps
generated by a classifier that
used only the intensity-based
features; c the probability maps
generated by a classifier that
used both the intensity-based
and the geometric features. The
probability maps were
visualized using the ITK-Snap
software [40]

Fig. 5 Search of target point Ri
for the image force. a Mesh
vertices close enough to the
image plane and whose
projection L∗

i is within image
bounds are selected (yellow ●).
b For each vertex projection L∗

i
(●), values are sampled along
the projected normal direction
n∗
i at regular steps s. The

sampled position at which the
image gradient ∇I is the largest
and the best aligned with n∗

i is
chosen as the target point Ri (▲)

when particle interactions are ignored. Approximate deriva-
tivemay be chosen to preserve the system symmetry required
by the conjugate gradient method or to simplify computa-
tions. For instance, the global shape force computation for
a vertex i will actually depend on all particle positions at

the previous time step. However, we intentionally (wrongly)
assume that the resulting Ri will not depend on the particle
positions. In practice, neither instabilities nor odd behaviors
were noticed with the chosen approximations.
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Experimental design and results

Dataset

Our dataset consists of 25 MR gadolinium-enhanced radial
scans of 25 patients symptomatic of FAI or AVN. They were
acquired in the period 2010–2016 in the Sonnenhofspital,
Bern, Switzerland, following a radial sequencing acquisi-
tion protocol of the hip joint [13]. The age of the patients is
16–47 years with a mean age of 29.0 years, 11 are male, and
14 are female. In 12 patients it is the left hip that is scanned
and in 13 cases it is the right one. The 3D geometry of an
example radial scan is visualized in Fig. 1. The intra-slice
spacing is in 0.28–0.29 mm range, the size of the images is
either 448×448 (19 cases) or 512×512 (6 cases), and there
are 14 images in every scan. Radial scans of this type are rou-
tinely acquired in the aforementioned hospital. A reference,
manual segmentation of every image of the radial scans is
also provided.

Study design

A fivefold cross-validation study is performed on the dataset
of the 25 radial scans with every fold consisting of five
scans. Therefore, each scan is utilized exactly once as part
of a test set. The reference image of the intensity normaliza-
tion preprocessing step is set to be the image of the training
set with the median mean intensity. For the initialization of
the deformable model registration stage, the following three
landmarks were used: (a) the femoral head center, (b) the
femoral neck center and (c) the tip of the minor trochanter.
These were specifiedmanually for each case using the “Fidu-
cials” module of the Slicer 3D open-source software [41].

Hyper-parameters

Random forest

Given the relatively small size of our dataset, themost prefer-
able way to tune the hyper-parameters of the random forest
would be independently for every cross-validation iteration
through a nested cross-validation scheme. However, due to
the long training times (more than half a day for one itera-
tion),we opted to set the hyper-parameters in advance to fixed
values, based on related literature and prior knowledge on the
task at hand. Specifically, when random forests are utilized as
classifiers for image segmentation problems (as in [42–46]),
the maximum depth of the trees is usually in the T ∈ [20, 40]
range and their number in the N ∈ [20, 120] range. These
parameters affect the generability of the trained classifier: For
a fixed depth, more trees reduce the variance of the model
(but lead to higher training and testing times) and, for a fixed
number of trees, the depth influences the bias–variance trade-

off. These effects of T , N can be explained theoretically [50],
and they have been observed in practice [46–48]. We con-
servatively set the maximum depth to T � 20 to prevent
overfitting and the number of trees to N � 50. The box size
of the intensity-based features is between 0.3 mm, which
is slightly larger than the pixel spacing in the dataset, and
up to 7.5 mm, as we expect that no area in the foreground
larger than 7.5×7.5 mm2 has uniform intensity. Following
the practice of our priorwork [49],we set themaximum range
of the intensity features to double the maximum length of the
boxes, i.e., to 15 mm.

A posteriori, we varied the tree depth as T ∈
{15, 20, 25, 30}, keeping the number of trees to N � 50.
We found out that for T�25 for the classifier-based method,
themean scanDSC increased by 0.07% and themean SMAD
decreased by 0.02%, suggesting that there is some room for
better tuning of our method, probably though only marginal.
Since we did not follow a nested cross-validation strategy,
we are reporting here the results obtained with the preset
parameter values.

Deformable model

The hyper-parameters of the deformable model registration
stage were chosen based on an empirical analysis performed
on three randomly chosen cases. The procedure was based
on a semiautomatic interactive segmentation, during which
a skilled operator could increase or decrease the influence
of forces as well as increasing the resolution of the mesh
when needed. Some initial parameters of the segmentation,
such as weight forces or image force coverage, were derived
from our previous experience in MRI segmentation of the
hip [22]. From this previous work, we could already identify
some best strategies to apply, such as the choice of the SSM
alignment with respect to the mesh resolution. All operator
actions were recorded in a script which could be reapplied
later on in an automatic fashion on the test cases. If some high
errors were detected, the operator would rerun the interactive
segmentation and adapt her/his choices until a satisfactory
segmentation was observed for the three cases. As a mea-
sure against overfitting with respect to these cases, the script
was cleaned out to keep the parameters as constant as possi-
ble, since the operator varied some of them unnecessarily
over time. The parameters whose variation was found to
have a significant impact on the results were the global shape
force weight and image force coverage; only these two were
allowed to evolve over time.

Using the strategy described above, the deformable model
used 4 mesh resolutions, ranging from 700- to 50-K points.
The mass of a vertex was set as the total surface of the mesh
divided by the number of vertices. Mesh resolution 3 (the
coarsest) used a rigidly aligned SSM, while resolutions 2 and
1 used an SSMwith affine alignment. The highest resolution
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0 did not use any global shape force. The weighting force
coefficients∝i of the smoothing and local shape forces were,
respectively, set to 0.2 and 0.3. The global shape force weight
progressively decreased from 0.8 to 0.1 during the simulation
as follows: For 51% of the total iterations count the weight
was set to 0.8, then to 0.4 for 8%, 0.3 for 13%, 0.1 for 20%and
0 (the force being not used for the highest mesh resolution)
during the remaining 8%. The statistical shape models were
built from training femur shapes produced by segmenting a
collection of 200 hip CT images. The image force weight
was kept constant at 0.05 for the MR image and 0.45 for the
probability map, but the image force coverage decreases over
time from 9 (W �4) samples to 5 (W �2) samples spaced
by s �1.2 mm. The distance threshold l of the image force
was set to 0.001 mm. Finally, damping weight was set to 0.5
and the time step was 1.0.

Evaluationmetrics

The accompanying manual segmentation of the proximal
femur is treated as the ground truth in our study.We compare
the generated segmentation with this reference segmentation
with respect to area overlap and border distance.

The area overlap is quantified with the Dice similarity
coefficient (DSC), and two types of DSC measurements are
performed: (a) TheDSC is computed independently for every
2D image, and (b) all the images of a scan are treated as a
single set and their DSC is computed with respect to the set
of the image segmentations.

The two borders are compared using the symmetric mean
absolute distance (SMAD) measure and the Hausdorff dis-
tance measure. The segmentation of every radial scan is
treated as a single set; thus, all the images of a scan are
taken into consideration. We also repeat these measurements
specifically for the femoral head area by isolating the region
from the hip joint to the femoral head center using a 3Dmask.

The achieved scores on these metrics are presented in
Table 1. In Fig. 6, the images of the radial scan with the
median scanDSCvalue (96.65%) are listed, overlaidwith the
reference segmentation and the output of our method. Sub-
figures e and f of Fig. 1 illustrate an example registered 3D
model of a testing case, along with two of its radial images.

When the three cases that were utilized for the configu-
ration of the deformable model stage are omitted from the
evaluation, the mean SMAD gets slightly better (0.62 mm
instead of 0.64 mm), the scan DSC gets slightly worse
(96.34% instead of 96.40%), and the mean values of the
remaining 4 evaluationmetrics stay the same, suggesting that
no significant bias was introduced by the inclusion of these
three cases in the evaluation.

Table 1 Performance of the proposed pipeline

Mean SD Median Min. Max.

DSC over scans
(%)

96.37 1.55 96.65 90.90 97.47

DCS over images
(%)

96.40 1.45 96.68 89.86 97.40

SMAD (mm) 0.94 0.39 0.84 0.69 2.20

SMAD, only
femoral head
(mm)

0.64 0.18 0.54 0.40 1.06

Hausdorff (mm) 2.37 1.13 2.14 1.43 4.35

Hausdorff, only
femoral head
(mm)

1.41 0.56 1.28 0.81 3.83

The DSC over whole scans (each one consisting of 14 images) and the
DSC over individual images are both presented
The symmetric mean absolute distance (SMAD) and the Hausdorff dis-
tance are computed for both the whole proximal femur and for the
femoral head area only

Evaluation of specific components of the pipeline

The study was repeated for two variants of the proposed
method, using the same five folds, in order to quantify the
effect of specific components of the pipeline.

Firstly, we assess the effect of the deformablemodel regis-
tration stage on the segmentation performance by comparing
the proposed pipeline with an alternative one that is based
on the classifier without any registration of a 3D model. In
order to make the comparison fair, we improve the result of
the alternative method with standard post-processing opera-
tions: Firstly, a Conditional Random Field (CRF) [38] with
a simple Potts model is applied, whose unary potentials are
the probabilistic prediction of the random forest. The CRF
inference is performed using the DGM C++ library [51].
Then, any holes on the resulting segmentation are filled and
its largest connected component is the final output. The per-
formance of this classifier-based method is summarized in
Table 2.

Secondly, the importance of the geometric feature is
assessed by measuring the segmentation performance when
this feature is not utilized. The scores achieved are presented
in Table 3.

Statistical tests were conducted for each of the two vari-
ants in order to determine whether their performance differs
significantly from the default pipeline, in the sense that is
described in this paragraph. In particular, for each of the
six evaluation metrics, a two-sided Wilcoxon signed-rank
test was performed, hereinafter abbreviated as WSR. Let
mi , vi , i ∈ {1, . . . , N } be the measurements of two methods
M, V , as obtained on a set of N samples. Let also DM , DV

denote the distributions thatmi , vi , respectively, are sampled
from. WSR examines the differences xi � mi − vi , whose
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Fig. 6 Segmentation result for
the 14 images of the case with
the median DSC (96.65%) and
illustration of its errors with
respect to the manual, reference
segmentation. Blue: true positive
pixels; red: false negative pixels;
green: false positive pixels

distribution is denoted with DX . WSR makes the follow-
ing assumptions: that the N samples are chosen randomly,
that the values of the metric can be treated as continuous (so

that expressions like mi − vi are meaningful) and that DX

is approximately symmetric around its median value θX . Its
null hypothesis is the following [52–54]:
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Table 2 Performance of a purely
classifier-based pipeline,
without the registration of a 3D
model

Mean SD Median Min. Max. p-value

DSC over scans
(%)

95.69 1.87 96.42 89.58 97.49 0.0100

DSC over
individual
images (%)

95.68 1.84 96.35 89.75 97.42 0.0046

SMAD (mm) 1.12 0.51 0.99 0.68 3.04 0.0103

SMAD, only
femoral head
(mm)

0.86 0.54 0.67 0.46 3.13 0.0001

Hausdorff (mm) 2.75 1.24 2.44 1.71 7.16 0.0488

Hausdorff, only
femoral head
(mm)

1.64 0.85 1.43 0.64 4.79 0.0488

A Wilcoxon signed-rank test was performed for each of the six evaluation metrics in order to determine
whether the differences with the full pipeline (Table 1) are statistically significant
After the conduction of the six tests, the Holm–Bonferroni correction method was applied and the resulting
(corrected) p-values are listed in the rightmost column

Table 3 Performance when the
geometric feature is not used Mean Std. Dev. Median Min. Max. p-value

DSC over scans
(%)

95.80 2.32 96.40 85.04 97.39 0.0007

DSC over
individual
images (%)

95.78 2.36 96.35 85.29 97.33 0.0008

SMAD (mm) 1.08 0.53 0.98 0.70 3.48 0.0013

SMAD, only
femoral head
(mm)

0.74 0.33 0.66 0.43 2.07 0.0125

Hausdorff (mm) 2.59 1.42 2.25 1.44 9.08 0.1122

Hausdorff, only
femoral head
(mm)

1.61 0.71 1.46 1.14 4.87 0.0170

As shown in Table 2, a Wilcoxon signed-rank test was performed for each of the six evaluation metrics to
determine whether the differences with the full pipeline (Table 1) are statistically significant
After the conduction of the six tests, the Holm–Bonferroni correction method was applied and the resulting
(corrected) p-values are listed in the rightmost column

Null hypothesis of WSR : θX � 0.

The WSR was chosen over the paired samples t test, whose
null hypothesis is that the mean value of DX is zero, because
the distributions of the valueswere found be to non-Gaussian.
As a counteraction to the well-known multiple comparisons
problem, after the conduction of the six tests, the Holm–Bon-
ferroni correctionmethodwas applied. The significance level
for all the statistical tests was set to 0.05. The resulting (cor-
rected) p-values are reported in the rightmost columns in
Tables 2 and 3.

Discussion and conclusion

Performance of the proposed pipeline

We performed a validation study on the radial MR scans
of 25 patients symptomatic of FAI or AVN. The proposed
pipeline yields satisfactory results in terms of both area over-
lap and border distance to the reference segmentation. As
summarized in Table 1, the mean DSC of the segmentation
is 96.37%, the mean SMAD is 0.94 mm, and the mean Haus-
dorff distance is 2.37 mm. There is generally no significant
difference between computing the DSC of the whole scan
and computing the mean DSC of its images, as the femur
occupies more or less the same area in all the images.
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In Fig. 6, it can be qualitatively observed that the largest
difference with the manual segmentation of a typical case
(the one with the median DSC) occurs near the trochanters,
whereas there is less difference near the joint space. This
agrees with the results in Table 1, as the average SMAD
and the average Hausdorff distance are much lower when
calculated only on the femoral head (0.64 mm and 1.41 mm,
respectively, compared to 0.94 mm and 2.37 mm). We think
that this is important for certain applications, since frequently
the most critical part of the proximal femur is the one close to
the hip joint. It also demonstrates the ability of the proposed
method to follow the border of the proximal femur in the
regions affected by the crosstalk artifact of the radial scans,
which can be challenging during manual segmentation.

Some representative images from six scans are shown
in Fig. 7, each exemplifying typical pathological findings
and/or challenges for the automated segmentation (three
cases where the femoral heads have a highly non-spherical
shape and three cases with cam lesions). The border of the
automated segmentation is also shown. The pipeline copes
with these variations in most cases satisfactory, but mistakes
do happen. In Fig. 7, it can be observed that the method did
not manage to follow the border of a non-spherical femoral
head in a subregion of one case and that a small cam-type
lesion was segmented out in another image.

In terms of runtime performance, the proposed pipeline
is relatively fast: On a system with a standard Intel i7 CPU
dual core at 2.7 GHz, the random forest classification takes
about 2.5 s per slice, therefore 35 s for the 14 images of a
scan. The subsequent deformable model registration takes
approximatively 40 s. The preprocessing stage completes in
around 10 s; thus, the pipeline needs around 1.5 min in total
to segment the 14 images of a scan and to reconstruct the 3D
model of the proximal femur.

Effect of the geometric feature

When only intensity-based features are used, the probability
maps frequently have highvalues for areaswhich are far away
from the femur and the border between background and fore-
ground is not always sharp. These problems are illustrated in
Fig. 4b. After the inclusion of the geometric feature, the situ-
ation is much improved (Fig. 4c). The effect in performance
is quantified in Table 3, which presents the performance of
a pipeline that uses only intensity-based features in the clas-
sification process: The average, standard deviation, median,
minimum and maximum values of all the evaluation metrics
get worse, with the average scan DSC decreasing from 96.37
to 95.80%, the average SMAD increasing from 0.94 mm to
1.08 mm and the average Hausdorff distance increasing from
2.37 to 2.59 mm.

This variant was compared with the default pipeline using
a WSR test for each evaluation metric, followed by a cor-

rection of the p-values with the Holm–Bonferroni method.
Within the confidence level of 95%, the difference with the
default pipeline with respect to the Hausdorff distancemetric
was found to not be statistically significant. The difference
with respect to each of the remaining five metrics was found
to be statistically significant within the confidence level of
95%.

Importance of deformable model registration stage

We also compared the proposed system with a purely
classifier-based approach. We found that the latter yields
slightly worse mean values of all the six evaluation metrics
(Table 2): The average scan DSC decreases from 96.37 to
95.69%; the average SMAD increases from 0.94 to 1.12mm,
and the average Hausdorff distance increases from 2.37 to
2.75 mm. The performance of the classifier-based variant
was compared with that of the default pipeline using a WSR
test for each evaluationmetric, followed by a correction of the
p-values with the Holm–Bonferroni method. Within the con-
fidence level of 95%, the difference with the default pipeline
with respect to each metric was found to be statistically sig-
nificant.

In Fig. 8, the difference in performance between the
two variants can be assessed visually. This figure presents
box-and-whisker plots for the two variants for all the six eval-
uation metrics. A first observation that we can make from
these plots is that there are strong outliers for all the met-
rics, indicating that their distributions cannot be considered
Gaussian. Secondly, the boxes of the plots illustrate the fact
that both the median values of the metrics and their distance
from the lower quartile (Q1) to the higher quartile (Q3), i.e.,
their interquartile ranges (IQR), are generally better with the
deformable model (the only exception is the IQR for the
Hausdorff distance, which does not change significantly).
Visually, it seems that the difference between the two vari-
ants is least significant with respect to the Hausdorff distance
in the femur head area and most significant with respect to
the SMAD in the femur head area. Both observations agree
with the minimum andmaximum computed p-values that are
reported in Table 2.

We observed that the biggest performance gains with the
deformable model registration frequently occur on the scans
which are the most challenging to the classifier. For exam-
ple, the classifier-based method performed worst in the cases
with Ids 4, 9 and 12, with average scan DSCs of 90.95%,
89.58% and 93.53% and average SMADs of 2.21 mm, 3.04
mm and 1.60 mm, respectively. The hip joint of case 4 has
image findings consistent with Perthes disease, and the cases
9 and 12 correspond to the youngest patients of our dataset
(16 years old). Within the variance observed in our dataset,
all these three proximal femurs have non-typical appearance.
In these cases, the proposed pipeline achieves scan DSCs
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Fig. 7 Visualization of six
representative radial images
with pathological findings
and/or presenting challenges for
the segmentation, each
corresponding to a different
patient. a–c Non-spherical
shape of femur head; d–f lesions
of cam-type FAI (femoral
“bumps”). Below every image,
the border of the segmentation
achieved by the pipeline is also
shown. In c and e, the result of
the pipeline has visible
mistakes. In c, the border of a
subregion of the femoral head is
not captured correctly and in e a
lesion is segmented out

90.90%, 95.34% and 95.44% and average SMADs 2.20 mm,
1.39 mm and 1.12 mm for cases 4, 9 and 12, respectively.
Our interpretation of these results is that, in some scans, the
proximal femur has an appearance that has not been encoun-
tered during training, and hence, the classifier has difficulty
in capturing its borders accurately. When this happens, the
registration of the 3D mesh can help by taking advantage of
its explicit modeling of the global shape of the femur.

We can summarize that the advantage of the purely
classifier-based approach is that it performs only slightly
worse than the complete pipeline while it remains fully auto-
mated, as it does not need to be initialized using manually
specified landmarks. The full pipeline proceeds with the reg-
istration of a deformablemodel of the proximal femur, which
we found to improve the segmentation performance. While
it is true that this improvement in performance is small, the
resulting registered model of the proximal femur has impor-
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Fig. 8 Box-and-whisker plots of the proposed pipeline and the purely
classifier-based variant for all the six evaluation metrics. The proposed
pipeline corresponds to the blue boxes (gray background), and the
purely classifier-based variant corresponds to the yellow boxes (white
background). For clarity of visualization, the data points have been
jittered horizontally. The boxes span from the lower quartile (Q1) to

the higher quartile (Q3), and the band within them corresponds to the
median value. Thus, the span of the boxes is equal to the IQR. The
two whiskers lay on lowest data point still within 1.5 IQR of the lower
quartile and on the highest data point still within 1.5 IQR of the upper
quartile

tant implications for clinical applications. Indeed, the output
of a classifier is only a binary segmentation mask, whereas
the registered model provides rich contextual interpretation
of the segmentation result. The latter can be used for the
direct localization of anatomical landmarks and for further
planning of surgical procedures. For example, it permits
the direct computation of clinically relevant morphometric
features, such as the head and neck diameters, the spheric-
ity of the head, the length of the proximal femur and the
intertrochanteric distance.

Conclusions

We present a pipeline for the segmentation of the proximal
femur from radial scans of the hip and the reconstruction of
its 3D model. We performed a fivefold cross-validation on a
dataset of 25 radial scans of patients symptomatic of FAI or
AVN.With respect to amanual, reference segmentation of the
proximal femur, the resulting segmentation has an average
DSC of 96.37%, an average mean SMAD of 0.94 mm and an
average Hausdorff distance of 2.37 mm. In the femoral head
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subregion, the average SMAD is 0.64 mm and the average
Hausdorff distance is 1.41 mm.

In our view, the main limitation of the presented study is
the lackof a comparisonwith the segmentation achieved from
3DMRI scans. Such an extension of our study is significant,
as it will permit the detailed evaluation of the fitted 3Dmodel
and the examination of how the segmentation accuracy is
affected by the lack of the dense intensity information of the
3D MRI. Unfortunately, we did not have accompanying 3D
CT or MRI scans for the cases of our dataset, so such a study
was not possible. In the future, we plan to collect additional
3D images, permitting us to further investigate the potential
of a method based solely on radial scans to provide a reliable
3D model of the proximal femur.

As part of future work, we also intend to replace the man-
ual picking of the three landmarks for the initialization of
the deformable model registration stage with an automated
method, thus rendering the whole pipeline fully automated.
For this purpose, we could employ a random forest regres-
sion localization approach, akin to our previous work [39].
Another possible extension important from a clinical stand-
point is the concurrent segmentation of the acetabulum: The
critical attribute of FAI is a decreased range of motion;
therefore, the modeling of the whole hip joint is a neces-
sary component of a complete system what aims to facilitate
the management of the condition. As the acetabulum socket
is within the FOV of the radial scans, we expect that the
classification stage can be directly extended for this task by
simply adding a third class corresponding to the acetabulum.
The registration of a 3D model of the acetabulum could be
performedwith the currently employedmethod,with the nec-
essary inclusion of a collision detection step that considers
both parts of the hip joint.

In conclusion, surgical correction of cam-FAI or AVN is
challenging and requires exact preoperative planning. The
3Dmodel of the proximal femur as reconstructed by the pro-
posed method can be utilized for this planning, as it does
not require any modification to the MR protocol for these
frequent hip diseases. We intend to use this method for diag-
nosis and planning of surgical correction of cam-FAI or AVN
because, unlike 3DMRI, radial MR scans can be included in
a routine MRI of the hip.
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