Skip to main content
Log in

Automated pulmonary nodule detection in CT images using 3D deep squeeze-and-excitation networks

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Pulmonary nodule detection has great significance for early treating lung cancer and increasing patient survival. This work presents a novel automated computer-aided detection scheme for pulmonary nodules based on deep convolutional neural networks (DCNNs).

Methods

The proposed approach employs 3D DCNNs based on squeeze-and-excitation network and residual network (SE-ResNet) for pulmonary nodule candidate detection and false-positive reduction. Specifically, a 3D region proposal network with a U-Net-like structure is designed for detecting pulmonary nodule candidates. For the subsequent false-positive reduction, a 3D SE-ResNet-based classifier is presented to accurately discriminate the true nodules from candidates. The 3D SE-ResNet modules boost the representational power of the network by adaptively recalibrating channel-wise residual feature responses. Both models utilize 3D SE-ResNet modules to learn nodule features effectively and improve nodule detection performance.

Results

On the public available lung nodule analysis 2016 dataset with 888 scans included, the proposed method reaches high detection sensitivities of 93.6% and 95.7% at one and four false positives per scan, respectively. Meanwhile, the competition performance metric score of 0.904 is achieved. The proposed method has the capability to detect multi-size nodules, especially the extremely small nodules.

Conclusion

In this paper, a 3D DCNNs framework based on 3D SE-ResNet modules is proposed to detect pulmonary nodules in chest CT images accurately. Experimental results demonstrate superior effectiveness of the proposed approach in pulmonary nodule detection task.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Torre LA, Siegel RL, Jemal A (2016) Lung cancer statistics. Adv Exp Med Biol 893:1–19. https://doi.org/10.1007/978-3-319-24223-1_1

    Article  PubMed  Google Scholar 

  2. Henschke CI (2000) Early lung cancer action project: overall design and findings from baseline screening. Cancer 89(11):2474–2482. https://doi.org/10.1002/1097-0142(20001201)89:11+%3c2474:aid-cncr26%3e3.0.co;2-2

    Article  CAS  PubMed  Google Scholar 

  3. Siegel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. CA Cancer J Clin 68(1):7–30. https://doi.org/10.3322/caac.21442

    Article  Google Scholar 

  4. National Lung Screening Trial Research T, Aberle DR, Adams AM, Berg CD, Black WC, Clapp JD, Fagerstrom RM, Gareen IF, Gatsonis C, Marcus PM, Sicks JD (2011) Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med 365(5):395–409. https://doi.org/10.1056/nejmoa1102873

    Article  Google Scholar 

  5. Karki A, Shah R, Fein A (2017) Multiple pulmonary nodules in malignancy. Curr Opin Pulm Med 23(4):285–289. https://doi.org/10.1097/MCP.0000000000000393

    Article  PubMed  Google Scholar 

  6. Zhang G, Jiang S, Yang Z, Gong L, Ma X, Zhou Z, Bao C, Liu Q (2018) Automatic nodule detection for lung cancer in CT images: a review. Comput Biol Med 103:287–300. https://doi.org/10.1016/j.compbiomed.2018.10.033

    Article  PubMed  Google Scholar 

  7. Lu L, Tan Y, Schwartz LH, Zhao B (2015) Hybrid detection of lung nodules on CT scan images. Med Phys 42(9):5042–5054. https://doi.org/10.1118/1.4927573

    Article  PubMed  Google Scholar 

  8. Saien S, Moghaddam HA, Fathian M (2018) A unified methodology based on sparse field level sets and boosting algorithms for false positives reduction in lung nodules detection. Int J Comput Assist Radiol Surg 13(3):397–409. https://doi.org/10.1007/s11548-017-1656-8

    Article  PubMed  Google Scholar 

  9. Gong J, Liu JY, Wang LJ, Sun XW, Zheng B, Nie SD (2018) Automatic detection of pulmonary nodules in CT images by incorporating 3D tensor filtering with local image feature analysis. Phys Med 46:124–133. https://doi.org/10.1016/j.ejmp.2018.01.019

    Article  PubMed  Google Scholar 

  10. Schmidhuber J (2014) Deep learning in neural networks: an overview. Neural Netw 61:85–117. https://doi.org/10.1016/j.neunet.2014.09.003

    Article  PubMed  Google Scholar 

  11. Szegedy C, Liu W, Jia YQ, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. IEEE CVPR 2015:1–9. https://doi.org/10.1109/CVPR.2015.7298594

    Article  Google Scholar 

  12. Setio AAA, Traverso A, de Bel T, Berens MSN, Bogaard CVD, Cerello P, Chen H, Dou Q, Fantacci ME, Geurts B, Gugten RV, Heng PA, Jansen B, de Kaste MMJ, Kotov V, Lin JY, Manders J, Sonora-Mengana A, Garcia-Naranjo JC, Papavasileiou E, Prokop M, Saletta M, Schaefer-Prokop CM, Scholten ET, Scholten L, Snoeren MM, Torres EL, Vandemeulebroucke J, Walasek N, Zuidhof GCA, Ginneken BV, Jacobs C (2017) Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the LUNA16 challenge. Med Image Anal 42:1. https://doi.org/10.1016/j.media.2017.06.015

    Article  PubMed  Google Scholar 

  13. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M et al (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88. https://doi.org/10.1016/j.media.2017.07.005

    Article  Google Scholar 

  14. Murphy A, Skalski M, Gaillard F (2018) The utilisation of convolutional neural networks in detecting pulmonary nodules: a review. Br J Radiol 91(1090):20180028. https://doi.org/10.1259/bjr.20180028

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hu Z, Tang J, Wang Z, Zhang K, Zhang L, Sun Q (2018) Deep learning for image-based cancer detection and diagnosis—a survey. Pattern Recognit 83:134–149. https://doi.org/10.1016/j.patcog.2018.05.014

    Article  Google Scholar 

  16. Setio AA, Ciompi F, Litjens G, Gerke P, Jacobs C, van Riel SJ, Wille MM, Naqibullah M, Sanchez CI, van Ginneken B (2016) Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks. IEEE Trans Med Imaging 35(5):1160–1169. https://doi.org/10.1109/TMI.2016.2536809

    Article  PubMed  Google Scholar 

  17. Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. MICCAI 2015:234–241. https://doi.org/10.1007/978-3-319-24574-4_28

    Article  Google Scholar 

  18. Zagoruyko S, Komodakis N (2016) Wide residual networks. In: BMVC 2016

  19. Huang XJ, Shan JJ, Vaidya V (2017) Lung nodule detection in CT using 3D convolutional neural networks. IEEE ISBI 2017:379–383. https://doi.org/10.1109/ISBI.2017.7950542

    Article  Google Scholar 

  20. Dou Q, Chen H, Yu LQ, Qin J, Heng PA (2017) Multilevel contextual 3-D CNNs for false positive reduction in pulmonary nodule detection. IEEE Trans Bio Med Eng 62(7):1558–1567. https://doi.org/10.1109/TBME.2016.2613502

    Article  Google Scholar 

  21. Dou Q, Chen H, Jin YM, Heng PA (2017) Automated pulmonary nodule detection via 3D ConvNets with online sample filtering and hybrid-loss residual learning. MICCAI 2017(10435):630–638. https://doi.org/10.1007/978-3-319-66179-7_72

    Article  Google Scholar 

  22. He K, Zhang XY, Ren SQ, Sun J (2016) Deep residual learning for image recognition. IEEE CVPR 2016:770–778. https://doi.org/10.1109/CVPR.2016.90

    Article  Google Scholar 

  23. Jin HS, Li ZY, Tong RF, Lin LF (2018) A deep 3D residual CNN for false-positive reduction in pulmonary nodule detection. Med Phys 45(5):2097–2107. https://doi.org/10.1002/mp.12846

    Article  PubMed  Google Scholar 

  24. Ding J, Li AX, Hu ZQ, Wang LW (2017) Accurate pulmonary nodule detection in computed tomography images using deep convolutional neural networks. MICCAI 2017(10435):559–567. https://doi.org/10.1007/978-3-319-66179-7_64

    Article  Google Scholar 

  25. Ren SQ, He KM, Girshick R, Sun J (2016) Faster R-CNN: towards real-time object detection with region proposal networks. IEEE TPAMI 2016:1137–1149. https://doi.org/10.1109/TPAMI.2016.2577031

    Article  Google Scholar 

  26. Zhu WT, Liu CC, Fan W, Xie XH (2018) DeepLung: 3D deep convolutional nets for automated pulmonary nodule detection and classification. IEEE WACV 2018:673–681. https://doi.org/10.1101/189928

    Article  CAS  Google Scholar 

  27. Chen YP, Li JN, Xiao HX, Jin XJ, Yan SC, Feng JS (2017) Dual path networks. In: NIPS 2017

  28. Huang G, Liu Z, van der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. IEEE CVPR 2017:2261–2269. https://doi.org/10.1109/CVPR.2017.243

    Article  Google Scholar 

  29. Khosravan N, Bagci U (2018) S4ND: single-shot single-scale lung nodule detection. MICCAI 2018(11071):794–802. https://doi.org/10.1007/978-3-030-00934-2_88

    Article  Google Scholar 

  30. Zhu W, Vang YS, Huang Y, Xie X (2018) DeepEM: deep 3D ConvNets with EM for weakly supervised pulmonary nodule detection. MICCAI 2018(11071):812–820. https://doi.org/10.1007/978-3-030-00934-2_90

    Article  Google Scholar 

  31. Hu J, Shen L, Albanie S, Sun G, Wu EH (2018) Squeeze-and-excitation networks. In: IEEE CVPR 2018, pp 7132–7141. https://doi.org/10.1109/cvpr.2018.00745

  32. Zhu WT, Huang YF, Zeng L, Chen XM, Liu Y, Qian Z, Du N, Fan W, Xie XH (2018) AnatomyNet: deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy. Med Phys 46(2):576–589. https://doi.org/10.1002/mp.13300

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant No. 81871457), the National Natural Science Foundation of China (Grant No. 51775368), the National Natural Science Foundation of China (Grant No. 51811530310) and the Science and Technology Project of Tianjin (Grant No. 18YFZCSY01300). We are grateful to the LUNA16 challenge organizers for their efforts in collecting and sharing chest CT scan data for comparing pulmonary nodule detection algorithms.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shan Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, L., Jiang, S., Yang, Z. et al. Automated pulmonary nodule detection in CT images using 3D deep squeeze-and-excitation networks. Int J CARS 14, 1969–1979 (2019). https://doi.org/10.1007/s11548-019-01979-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-019-01979-1

Keywords

Navigation