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Abstract

Purpose Histopathological imaging is widely used for the analysis and diagnosis of multiple diseases. Several methods have
been proposed for the 3D reconstruction of pathological images, captured from thin sections of a given specimen, which get
nonlinearly deformed due to the preparation process. The majority of the available methods for registering such images use
the degree of matching of adjacent images as the criteria for registration, which can result in unnatural deformations of the
anatomical structures. Moreover, most methods assume that the same staining is used for all images, when in fact multiple
staining is usually applied in order to enhance different structures in the images.

Methods This paper proposes a non-rigid 3D reconstruction method based on the assumption that internal structures on the
original tissue must be smooth and continuous. Landmarks are detected along anatomical structures using template matching
based on normalized cross-correlation (NCC), forming jagged shape trajectories that traverse several slices. The registration
process smooths out these trajectories and deforms the images accordingly. Artifacts are automatically handled by using the
confidence of the NCC in order to reject unreliable landmarks.

Results The proposed method was applied to a large series of histological sections from the pancreas of a KPC mouse. Some
portions were dyed primarily with HE stain, while others were dyed alternately with HE, CK19, MT and Ki67 stains. A new
evaluation method is proposed to quantitatively evaluate the smoothness and isotropy of the obtained reconstructions, both
for single and multiple staining.

Conclusions The experimental results show that the proposed method produces smooth and nearly isotropic 3D reconstruc-
tions of pathological images with either single or multiple stains. From these reconstructions, microanatomical structures
enhanced by different stains can be simultaneously observed.
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Microscopic images from histological sections are widely
used for the analysis and definitive diagnosis of multiple
diseases [8,17]. It is one of the modalities with highest spa-
tial resolution, allowing the observation of small anatomical
structures at sub-micrometer scales. A common approach for
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obtaining a 3D microscopic image is to reconstruct it from a
series of images of spatially continuous thin sections sliced
from a target tissue, and several methods following this prin-
ciple have been proposed [17,21]. When mounted in a glass
slide, each thin section gets non-rigidly deformed, requiring
3D reconstruction methods to properly register the original
images in order to obtain a consistent reconstruction.
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These registration methods can be roughly divided into
two categories: intensity-based and landmark-based tech-
niques [17], the latter being more memory efficient when
processing very large pathological images. The methods in
each of these categories can again be classified into two
groups based on the criteria used to measure the quality of
the registration. While some methods calculate the degree
of match of two given images [2,3,16,19], others measure
the smoothness of the obtained 3D reconstruction [5,7,22].
The former approach tends to unnaturally deform three-
dimensional structures into vertical straight shapes, due to
the “banana” effect [15]. The method proposed in this paper
performs the registration based on landmarks extracted from
the original set of images, which are then deformed in order
to produce a 3D image with smooth spatial patterns, under the
assumption that the 3D patterns of the reconstructed image
will be smooth when the corresponding landmarks them-
selves form smooth patterns.

The majority of the methods for reconstruction of 3D
pathology images assume that the same staining is used for all
available thin sections, usually Hematoxylin & Eosin (HE).
However, it is uncommon to have only HE-stained sections,
but instead multiple different stains, which allow a more
complete understanding of the specimen under analysis [20].
The detection of corresponding landmarks is not straightfor-
ward when adjacent slices are dyed with different stains;
nevertheless, this paper shows that simple template match-
ing using normalized cross-correlation (NCC) can properly
detect corresponding landmarks between several different
combinations of staining. The level of confidence of the
template matching is also used to automatically reject unre-
liable landmarks resulting from artifacts, such as folds and
wrinkles, commonly present on pathological images of thin
sections.

Several methods construct local feature descriptors that
can explicitly label corresponding pixels from two differ-
ently stained images by unsupervised learning [4,20]. These
methods, however, can fail to assign similar labels when two
local regions of similar color pattern in one image are stained
differently in the other image, as the local feature descrip-
tors cannot distinguish between the two regions in the former
image. For instance, only some cells, which are difficult to
distinguish in HE-stained images, will be marked brown in
Ki67-stained images (active tumor cells). The most informa-
tive features for the correspondence of images with different
stains are edge locations within the images. The NCC can
evaluate the overlapping degree of these edges, and virtu-
ally all edges of one image can be observed in the adjacent
images.

The accuracy of the reconstructed 3D image is quanti-
tatively evaluated in the experiments. Many conventional
criteria for accuracy evaluation cannot directly be applied
to images reconstructed from slices of multiple stains. In
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this paper, the accuracy and isotropy of the reconstructed
3D image were evaluated by binarizing all slices of differ-
ent stains and evaluating the complexity of contour shapes
observed in the resulting images. This method demon-
strates that the proposed method can reconstruct smooth and
isotropic 3D images.

The contributions of this paper are threefold: (1) a method
capable of reconstructing a 3D pathological image from a
series of microscopic images of thin sections dyed with dif-
ferent stains is proposed, (2) a 3D pathological image of a
pancreas tumor that is reconstructed from thin sections dyed
with multiple stains is demonstrated, and (3) a method to
quantitatively evaluate the smoothness and isotropy of recon-
structed 3D images is proposed. Regarding (1), by employing
the trajectories’ smoothness of corresponding landmarks as
the criterion, the proposed method can simultaneously deter-
mine appropriate diffeomorphic mappings for each of the
input slice images. As for (3), the method explicitly extracts
boundaries of anatomical structures in order to evaluate their
complexity, since color image patterns cannot be directly
used for this evaluation when adjacent slices are dyed with
different stains. This paper is an extension of work originally
presented in MICCAI COMPAY 2018 [11]; the aforemen-
tioned contributions significantly expand over the previously
published results.

Image reconstruction

Let a set of NV images corresponding to the thin slices of the
original tissue be denoted as /; (u), whereu = (u1, uz)T rep-
resents the coordinates in the original imageandi = 1... N.
The registration process begins by rigidly registering the
images in order to remove large offsets and rotations [16],
resulting in the set I (x) = I (pl._l o u), where x =

(x1, xz)T are the coordinates on the new image set, with
X = p; (), and p; corresponds to the rigid transformation
parameters.

The nonlinear deformation process starts from detecting
a set of landmarks P,.J: | on the first image of the stack. Land-
marks are randomly sampled at locations with large gradients
of intensity according to the following probability:

p (x):{ |77 ] r2.it(| v o] >7) £ (x e /)
' , otherwise

ey

where Z is a normalization factor and T is a threshold. The
parameter Hi/ is used to define an area in which a landmark
can be sampled, thus ensuring an uniform distribution of the
landmarks and avoiding oversampling. Specifically, after a
landmark is found, no other landmarks will be sampled on
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(a)

(b)

Fig.1 Landmark-based nonlinear registration: a detection of corresponding points by template matching, b trajectories 7/ traversing images I; (x)
on landmarks Pl/ , and ¢ smoothed trajectories 7 QJ) and the destination coordinates Q{ [10]

the surrounding area. Although the sampling process does
not actively follow any specific anatomical structure, the
landmarks are likely to be generated along the edges such
structures, as they correspond to the regions with large gra-
dients. By setting the threshold 7T to a low value, only areas
with very low contrast will be ignored, such as the empty
areas of the slide around the target specimen, in which no
landmarks are expected to be detected.

For each landmark Pi] from I; (x), a corresponding point

Pl.]le is searched in ii+1 (x) using NCC-based template
matching, as shown in Fig. la. The NCC uses a template
size D and a maximal search distance of 2D from the orig-
inal coordinate of PiJ . The process is repeated over all N
images, creating a series of polygonal trajectories 7/ =
PLP P
points Pi = {Pl/ |i € [sj, tj] }, where s/ and ¢/ correspond

j .
- P formed by the sequence of corresponding

to the first and last images traversed by the jth trajectory,
with 1 < s/ < t/ < N. Due to the aforementioned nonlin-
ear deformations introduced on the images, these trajectories
tend to be very jagged, as shown in Fig. 1b.

Several alternatives exist for detecting corresponding
landmarks, among which mutual information [14] is widely
used for registering images of different modalities, but its
high computational cost makes it unsuitable for large image
datasets [1,13]. The NCC is not only computationally sim-
pler but also robust in the case of template matching between
images with different stains. The cross-correlation computed
by the NCC is maximized when both inputs change syn-
chronously. Thus, it will present higher values when the large
gradient templates selected by Eq. (1) are matched. Simul-
taneously, the normalization cancels most of the intensity
differences, which is the key for multiple stain registration.

It must be noticed that not all trajectories span over all
N images. Due to artifacts on the images, several false

matchings can occur. In order to prevent such invalid cor-
respondences, not only the coordinates of the maximal NCC
value, but also the confidence of the NCC itself is used to
determine if Pl./Jr1 is a valid corresponding point. If the NCC
value is lower than a threshold 6¢, the candidate correspond-
ing point will be discarded. Moreover, by applying backward
template matching [24] as shown in Fig. 1a, if the resulting
point ﬁi] is further from Pi] than a distance threshold 6p, the
candidate landmark will also be discarded. In both cases, the
trajectory 7/ is interrupted at I; (x) and a new trajectory 7%
is re-initiated at image I~i+1 (x) if a valid landmark can be
found using Eq. (1) in the area defined by Hik+1 .

The next step consists on smoothing these trajectories
under the assumption that the original anatomical structures
were smooth and continuous before the slicing of the spec-
imen. This is achieved by minimizing the total variation in
the trajectories as follows:

i—1

t
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where A is a trade-off parameter, x; corresponds to the

original landmark coordinates and y‘i’ correspond to the des-
tination coordinates where the jth smoothed trajectories
traverse the ith image. These new coordinates define new
locations Q{ for the landmarks, which in turn define a new

set ’Té = ng Qi/’-&-l .. Q{j of trajectories, as shown in Fig.
lc. The smoothness of the resulting trajectories can be con-
trolled by A: overlarge values would create almost vertical
lines, while too small values would not properly eliminate
the irregularities of the trajectory.

Finally, the dense deformation mappings ¢; required to
warp each image are calculated by interpolating each coarse
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deformation field defined by the landmarks’ displacement
using B-splines [12]. This method produces a diffeomorphic
mapping y; = ¢; oX; with hard constrains [18]. A sufficiently
dense set of landmarks, controlled by the parameter Hi] in
Eq. (1), guarantees that the final deformation field obtained
after the B-spline interpolation will be smooth. As each field
is independently interpolated, the B-spline calculations can
be efficiently parallelized.

In order to accurately handle large deformations and
reduce processing time, the aforementioned process is iter-
ated with increasingly larger image resolutions and smaller
template sizes D <— y D, where 0 < y < 1, in a coarse-to-
fine multiscale fashion. The template search and landmark
sampling areas are also updated accordingly.

The concept of smoothing trajectories of landmarks for 3D
reconstruction has been previously proposed. For instance,
Tan et al. [22] fitted smooth curves to the trajectories defined
by a small set of points selected from the contours of the tis-
sue, in order to optimize the affine transformations applied to
the individual images. However, the method does not allow
for nonlinear deformations inside the specimen. Gaffling et
al. [7] manually selected landmarks along anatomical struc-
tures, using the respective smoothed trajectories as constrains
to an intensity-based non-rigid registration. The sampling
strategy and the complexity of the registration algorithm
make this approach impractical for large datasets.

Smoothness and isotropy evaluation

Several methods are available for evaluating the quality of the
obtained reconstruction [6,17]. However, for large datasets
in which no gold standard is available, most of these methods
cannot be used. Visual assessment, even when performed by
experts, is subjective and provides no quantity measure, while
methods that rely on manual delineations over the images
are impractical for large amounts of images. Landmark-
based validation is based on the distance between landmarks
extracted from neighbor images, which, as previously stated,
might not indicate a good reconstruction in the case of non-
vertical anatomical structures.

Texture features are a viable approach for assessing the
quality of a 3D reconstruction [5]. The method is based on
gray-level co-occurrence matrix [9], which contains the fre-
quency of pairs of voxels of certain intensities along a given
direction. These frequencies are organized in a normalized
array g(i, j)g o, Where d is the distance between pairs of
voxels and « is the direction in which the pairs are evaluated.
Thus, a contrast feature descriptor ¢, can be defined as:

G—1 G G
ca= Y (=D 8l g 3)

i—j=0 i=1 j=1

@ Springer

where G is the number of distinct gray levels. Equation (3)
can be used as a smoothness measure by averaging c, over
all cross sections along the direction «.

A consistent reconstruction should not only be smooth,
but also isotropic, presenting the same properties along
any given direction. Assuming the statistical isotropy of
the microanatomical structures observed in the microscopic
images, the smoothness measure should be independent from
the direction of the cross sections along which it is cal-
culated. Thus, a necessary condition for isotropy is that
Cyiys A Cyys A Cyyyy» Where y = (y1, y2, y3) 1 corresponds
to the coordinates of the nonlinearly registered image set.

In the case of multiple stains, however, the contrast feature
metric cannot be directly applied. The transitions between
the stains in a given cross section would create high contrast
values that do not represent the smoothness of the recon-
struction. The method proposed here consists of binarizing
image portions containing ducts and other structures, using
different thresholds of hue, saturation and value for different
stains. These structures appear as white holes on the images,
regardless of the used stain. If the image is correctly recon-
structed, these holes will form smooth 3D structures. Thus,
a smoothness metric can be applied to the resulting binary
image and averaged over the cross sections along a given
direction.

This paper uses the average smoothness along different
directions in order to compare the nonlinear reconstruction
results with the rigidly aligned original images, as well as to
verify that the smoothness of cross sections across slices is
consistent with the smoothness of the slices themselves.

If no gold standard is available, when applied to methods
based on the degree of matching between images or landmark
coordinates, smoothness analysis alone cannot differentiate
between a properly reconstructed image and a reconstruction
presenting the “banana” effect [15]. However, as the pro-
posed method’s image warping strategy retrieves the spatial
connectivity of the anatomical structures, smoothness and
isotropy are appropriate criteria for the accuracy evaluation
of the reconstruction [20].

Experiments

Experiments were conducted using a KPC mouse image
dataset. This dataset consists of around 2500 images of
100k x 60k pixels, scanned from 4-pm sections of the
pancreatic tumor of a KPC mouse model [23]. The exper-
iments in this paper used a 15k x 10k pixels downsampled
version of the images. The images are grouped into five
blocks (from 5-mm sections of the original specimen), each
of which having the respective images stained with Hema-
toxylin & Eosin (HE) and Antigen KI-67 (Ki67) stains,
and one block also stained with Cytokeratin-19 (CK19) and
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Fig.2 Real trajectories
generated from a selected image
portion: a original trajectories
T before the registration and b

final trajectories 7 é after the
smoothing process. Segmented
trajectories due to discarded
landmarks can be clearly
observed

Fig.3 Reconstruction cross
sections of a portion of 610
HE-stained images a before
(only rigidly registered) and b
after the proposed nonlinear
registration

Masson’s Trichrome (MT) stains, in the following pattern:
HE-Ki67-HE-CK19-HE-MT. In all experiments, the rigid
registration used a template size of 1250 x 1250 pixels and
a search area of 2500 x 2500 pixels. Two iterations of the
non-rigid registration process were performed, with a start-
ing template size D of 100 x 100 pixels, a reduction rate
y of 0.5 and a landmark sampling area set equal to D. The
thresholds T and O¢ were set to, respectively, 0.1 and 0.3,
while p was also kept equal to D. The trade-off parameter A
was set to 507!, These parameters are generally noncritical
and were empirically determined.

Figure 2a, b show, respectively, actual trajectories 7/ and
Té for a selected image portion. The cross sections of an
HE-stained image block, before and after the registration,
are shown in Fig. 3. Several microstructures, such as ducts
and blood vessels, virtually indistinguishable in Fig. 3a, can
be clearly observed in Fig. 3b.

Figure 4 shows the results of the registration between
adjacent images of different stains, while Fig. 5 shows cross
sections from before and after the registration for an image
block with multiple alternated stains. Again, high-contrast
structures not visible in Fig. 5a can be clearly observed in
Fig. 5b. In this reconstruction, the two iterations of the non-

linear registration generated an average of 4665 and 17,144
landmarks per image, respectively.

The process for detecting artifacts is shown in Fig. 6,
where the HE image portion shown in Fig. 6a is registered
with an adjacent MT portion containing a wrinkle, shown in
Fig. 6¢. The candidate landmarks selected using Eq. (1) are
shown in Fig. 6b, in which the color indicates the forward
NCC confidence, and the radius corresponds to the backward
template matching distance. Figure 6¢ shows the final land-
marks plotted over the target image, in which landmarks over
the wrinkle region were eliminated by thresholds 6¢ and 6p.
For illustrative purposes, the landmark sets shown in Fig. 6
are denser than the sets used in the actual reconstructions.

In order to quantitatively evaluate the efficiency of the
proposed registration method, the smoothness over three
orthogonal directions was evaluated for R () and R (-). Two
different experiments were performed. At first, four different
cubic portions of side length 2.48 mm were selected from an
HE-stained image block, two from the necrosis area of the
tumor and two from the peripheral area. The average con-
trast was calculated for the cross section along y;, y» and y3
directions, with the y3 direction (y;y> plane) corresponding
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Fig.4 Registration results of image portions with multiple stains: a HE and Ki67, b HE and CK19, and ¢ HE and MT

Fig.5 Reconstruction cross
sections of a portion of 385
images of multiple stains a
before (only rigidly registered)
and b after the proposed
nonlinear registration
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Fig. 6 Example of landmark detection and artifact handling: a HE
source portion, b detected landmark candidates, in which the color indi-
cates the forward NCC confidence, and the radius corresponds to the
backward template matching distance, and c¢ final landmarks plotted

to the original stacked images. The images were converted
to gray scale and G set to 256.

The contrast results for the two necrosed areas are shown
in Fig. 7a, b, while Fig. 7c, d display the contrast results
for the peripheral areas. The y;y, plane corresponds to
the stacked images, in which contrast should be similar in
both rigid and non-rigid cases. The rigidly registered images
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over MT corresponding target portion, including a wrinkle. For illus-
trative purposes, the landmark sets shown here are denser than the sets
used in the actual reconstructions

present much larger contrast values for the y;ys and y>y3
planes. The non-rigid registration significantly reduces the
average contrast value, which become very close to the values
of the y; y» plane. The contrast value for necrosed portions is
lower than the peripheral portions due to the uniform pixel
value in these areas.
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Fig.8 Smoothness isotropy analysis of two image portions with multiple stains

The second experiment used two portions of side length
1.95 mm from a multi-stained image block, selected from
areas with large number of ducts and blood vessels. The

images

(b)

where then binarized with independent thresholds
of hue, saturation and value for each type of stain. The same
thresholds were used for all images of a given stain and, as
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the stains were quite consistent along the slices, no inten-
sities standardization was necessary. After the binarization,
the contrast value (with G = 2) was calculated in a similar
way to the previous experiment.

Figure 8 shows the results for the multiple stained portions.
Due to the simple thresholding method used in the experi-
ments, the resulting binary images are significantly noisy,
resulting in smoothness values that do not correspond to per-
fect isotropy in neither direction. Nevertheless, these results
confirm the efficiency of the proposed method in reconstruct-
ing images with multiple alternating stains.

Conclusions

This paper proposes a landmark-based nonlinear 3D recon-
struction method for histopathological images with multiple
stains. The method directly optimizes the smoothness of
trajectories defined by landmarks, detected along internal
structures on the tissue, deforming all images simultane-
ously. This approach preserves the shape of these anatomical
structures, avoiding the unnatural vertical structures often
produced by pairwise registration methods.

The use of landmark-based registration, along with the
relatively computationally simple template matching NCC
function, allows the proposed method to be applied to the
reconstruction of large pathological 3D images. Even though
NMI is widely used for registering images from differ-
ent modalities and could also be employed to find pairs
of landmarks between images of different stains, its com-
putational cost is much higher than that of NCC. Large
datasets of images from the pancreas of a KPC mouse with
both single and multiple stained images were successfully
reconstructed, showing the efficiency of the NCC on match-
ing corresponding points across roughly registered images
with multiple alternating stains, which was confirmed by the
smoothness analysis over binarized images. The method also
automatically handles artifacts, which are unavoidable in the
mounting and scanning of the slides and can deteriorate the
registration process.

Although the reconstruction method minimizes the total
variation in trajectories defined by the detected landmarks, it
does not directly optimizes the isotropy of the reconstruction;
nevertheless, the quantitative smoothness analysis demon-
strates that the obtained reconstructions are nearly isotropic.

Current work includes the reconstruction of a new KPC
mouse image dataset with more types of stains, which will
allow the detection of different types of microstructures
related to the dynamics of the tumor growth. Moreover, the
proposed method will be applied on the reconstruction of the
whole pancreatic tumors using the full-resolution images of
the KPC mouse datasets.
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