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Abstract
Purpose  In image-guided surgery for glioma removal, neurosurgeons usually plan the resection on images acquired before 
surgery and use them for guidance during the subsequent intervention. However, after the surgical procedure has begun, the 
preplanning images become unreliable due to the brain shift phenomenon, caused by modifications of anatomical structures 
and imprecisions in the neuronavigation system. To obtain an updated view of the resection cavity, a solution is to collect 
intraoperative data, which can be additionally acquired at different stages of the procedure in order to provide a better under-
standing of the resection. A spatial mapping between structures identified in subsequent acquisitions would be beneficial. 
We propose here a fully automated segmentation-based registration method to register ultrasound (US) volumes acquired 
at multiple stages of neurosurgery.
Methods  We chose to segment sulci and falx cerebri in US volumes, which remain visible during resection. To automati-
cally segment these elements, first we trained a convolutional neural network on manually annotated structures in volumes 
acquired before the opening of the dura mater and then we applied it to segment corresponding structures in different surgical 
phases. Finally, the obtained masks are used to register US volumes acquired at multiple resection stages.
Results  Our method reduces the mean target registration error (mTRE) between volumes acquired before the opening of 
the dura mater and during resection from 3.49 mm (± 1.55 mm) to 1.36 mm (± 0.61 mm). Moreover, the mTRE between 
volumes acquired before opening the dura mater and at the end of the resection is reduced from 3.54 mm (± 1.75 mm) to 
2.05 mm (± 1.12 mm).
Conclusion  The segmented structures demonstrated to be good candidates to register US volumes acquired at different 
neurosurgical phases. Therefore, our solution can compensate brain shift in neurosurgical procedures involving intraopera-
tive US data.

Keywords  Ultrasound · Image registration · Image segmentation · Convolutional neural network · Image-guided surgery

Introduction

In brain surgery for tumor removal, neurosurgeons usu-
ally plan the intervention on pre-surgical images. The most 
widely used modality for neurosurgery planning is mag-
netic resonance imaging [1, 2, 3]. To help physicians with 
the resection, neuronavigation systems can be used to link 
preplanning data positions to patient’s head locations. By 
tracking fiducial markers placed on the patient’s skull and 
surgical tools, an optical system computes an image-to-
patient transformation. Consequently, by pin-pointing an 
intracranial location, neurosurgeons can obtain the same 
position in the preplanning images. However, initialization 
inaccuracies of the neuronavigation system may invalidate 
the image-to-patient transformation, affecting the quality of 
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these images since the beginning of the resection [4]. Addi-
tionally, after resection starts, the preplanning data become 
even more unreliable due to the brain shift phenomenon: 
Structures observed in preplanning images don’t remain in 
the same conformation and position during tumor removal 
[4]. As a consequence, the probability that pathological ele-
ments are missed increases, reducing the survival rates of the 
operated patients [5, 6]. To overcome this problem, intraop-
erative images can be acquired [7]: They provide an updated 
view of the ongoing procedure and hence compensate the 
brain shift effects. A solution is represented by intraoperative 
magnetic resonance imaging (iMRI) [8]. It is demonstrated 
to be a good option [9] since its high image quality provides 
good contrast in anatomical tissue even during the resection 
[10]. However, the high costs of iMRI and the architectural 
adaptations required in the operating room seem to prevent 
this modality from being deployed more widely. A valid 
alternative is given by intraoperative ultrasound (iUS) [11, 
12, 13]. Some authors reported that for certain grades of 
glioma, iUS is equal or even superior to iMRI in providing 
good contrast between tumor and adjacent tissues [14, 15]. 
Moreover, US represents a lower-cost solution compared to 
MRI. In our work, we focus on intraoperative 3D ultrasound 
used in neurosurgical procedures.

The more the resection advances, the more the initial 
acquisition of iUS becomes unreliable due to increased 
brain shift effects. Therefore, an update of the intraopera-
tive imaging may be required. In [16], the authors acquired 
US volumetric data in subsequent phases of glioblastoma 
resections in 19 patients and compared the ability to dis-
tinguish tumor from adjacent tissues at three different steps 
of the procedure. According to their observations, the 3D 
images acquired after opening the dura, immediately before 
starting the resection (we indicate this phase as before resec-
tion), are highly accurate for delineating tumor tissue. This 
ability reduces during resection, i.e., after that most of the 
resection has been performed but with residual tumor, and 
after resection, i.e., when all the detected residual tumor 
has been removed. In fact, the resection procedure itself is 
responsible for creating small air bubbles, debris and blood. 
Besides this, a blood clotting inducing material1 commonly 
used during neurosurgical procedures causes several image 
artefacts [14, 17]. Successive studies regarding other types 
of tumor resection confirmed the degradation of image 
quality in US during resection [18]. Therefore, it would be 
helpful to combine US images acquired during and after 
resection with higher-quality data obtained before resec-
tion. Such a solution may also be beneficial to improve the 
registration of intraoperative data with higher-quality pre-
planning MRI images. In fact, instead of combining directly 

degraded US data with preplanning imaging, it would be 
useful to register first the pre-surgical MRI data with US 
volumes acquired before resection, in which few anatomical 
modifications occurred. Afterward, intraoperative US data 
acquired at the first stage of the surgery (which therefore has 
a higher quality) may be registered to subsequent US acqui-
sitions, and then the preplanning data could be registered to 
those by utilizing a two-step registration [19]. In this con-
text, neuronavigation systems could be used to co-register 
intraoperative images acquired at different surgical phases. 
However, these devices are prone to technical inaccuracies, 
which affect the registration procedure from the beginning 
of the resection [4]. Moreover, the available neuronaviga-
tion systems usually offer only a rigid registration, which 
is not sufficient to address anatomical changes caused by 
brain shift. In our work, we propose a deformable method to 
improve the registration of US volumes acquired at different 
stages in brain surgery.

Few solutions have been proposed to improve the US–US 
registration during tumor resection in neurosurgery. In [20], 
the authors studied the performance of the entropy-based 
similarity measures joint entropy (JE), mutual information 
(MI) and normalized mutual information (NMI) to register 
ultrasound volumes. They conducted their experiments with 
two volumes of an US calibration phantom and two volumes 
of real patients, acquired before the opening the dura mater. 
Different rigid transformations were applied on each volume, 
and the target registration error (TRE) was used as evalua-
tion metric. The accuracy of the registration was examined 
by comparing the induced transformation to move the origi-
nal images to the deformed ones, with the transformation 
defined by the entropy-based registration method. In both of 
the datasets, NMI and MI outperformed JE. In another work 
[21], the same authors developed a non-rigid registration 
based on free-form deformations using B-splines and using 
normalized mutual information as a similarity measure. Two 
datasets of patients were used, where for each case a US 
volume was acquired before the opening of the dura, and 
one after (but prior to start of tumor resection). To assess 
the quality of the registration, the correlation coefficient was 
computed within the overlap of both volumes and before and 
after registration. Furthermore, these authors segmented the 
volumetric extension of the tumor with an interactive multi-
scale watershed method and measured the overlap before and 
after the registration. One limitation of the aforementioned 
two studies is that no experiment is conducted on volumes 
acquired at different stages of the surgical procedure, but 
only before the resection actually begins. In a real scenario, 
neurosurgeons use intraoperative data to find residual tumor 
after a first resection, which is conducted after the opening 
of the dura mater.

One of the first solutions to register US data obtained 
at subsequent surgical phases utilized an intensity-based 1  Surgicel (Ethicon, Somerville, NJ).
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registration method to improve the visualization of volu-
metric US images acquired before and after resection [22]. 
The results are computed for 16 patients with different 
grades of brain supratentorial tumor and located in various 
lobes. Half of the cases were first operations, and half were 
re-operations. Pre-resection volumes were acquired on the 
dura mater, or either directly on the cortex (or tumor) or 
on a dura repair patch. The post-resection ultrasound was 
used to find any residual tumor. The authors used mutual 
information as similarity measure for a rigid registration. In 
the further non-rigid transformation, the correlation coef-
ficient objective function was used. To correctly evaluate 
their findings, for each of the 16 cases, a neuroradiologist 
chose 10 corresponding anatomic features across US vol-
umes. The initial mean Euclidean distance of 3.3 mm was 
reduced to 2.7 mm with a rigid registration, and to 1.7 mm 
with the non-rigid registration. The quality of the alignment 
of the pre- and post-resection ultrasound image data was 
also visually assessed by a neurosurgeon. Afterward, an 
important contribution to neurosurgical US–US registra-
tion came by the release of the BITE dataset [23], in which 
pre- and post-resection US data are publicly available with 
relative landmarks to test registration methods. One of the 
first studies involving BITE dataset came from [17]. The 
authors proposed an algorithm for non-rigid REgistration of 
ultraSOUND images (RESOUND) that models the deforma-
tion with free-form cubic B-splines. Normalized cross-corre-
lation was chosen as similarity metric, and for optimization, 
a stochastic descendent method was applied on its derivative. 
Furthermore, they proposed a method to discard non-corre-
sponding regions between the pre- and post-resection ultra-
sound volumes. They were able to reduce the initial mTRE 
from 3.7 to 1.5 mm with a registration average time of 5 s. 
The same method has been then used in [19]. In a composi-
tional method to register preoperative MRI to post-resection 
US data, they applied the RESOUND method to register 
first pre- and post-resection US images. In another solution 
[24], the authors aimed to improve the RESOUND algo-
rithm. They proposed a symmetric deformation field and an 
efficient second-order minimization for a better convergence 
of the method. Moreover, outlier detection to discard non-
corresponding regions between volumes is proposed. The 
BITE mean distance is reduced to 1.5 mm by this method. 
Recently, another method to register pre- and post-resection 
US volumes was proposed by [25]. The authors presented a 
landmark-based registration method for US–US registration 
in neurosurgery. Based on the results of 3D SIFT algorithm 
[26], images features were found in image pairs and then 
used to estimate dense mapping through the images. The 
authors utilized several datasets to test the validity of this 
method. A private dataset of nine patients with different 
types of tumor was acquired, in which 10 anatomical land-
marks were selected per case, in both pre- and post-resection 

volumes: For this set, they were able to reduce the mTRE 
from 3.25 mm to 1.54 mm. Then, they applied the same 
method on the BITE dataset and reduced the initial mean 
error to 1.52 mm. Moreover, they tested their approach on 
the more recent RESECT dataset [14]. By using the same 
method on the pre- and post-resection volumes, the mTRE 
was reduced from 3.55 to 1.49 mm.

Our solution proposes a segmentation-based registration 
approach to register US volumes acquired at different stages 
of neurosurgical procedures and compensate brain shift. A 
few approaches already applied segmentation methods on 
US data to then register MRI and iUS [27, 28]. Our solu-
tion represents the first segmentation-based method aimed at 
US–US volumes registration. Our approach includes a deep-
learning-based method, which automatically segments ana-
tomical structures in subsequent US acquisitions. We chose 
to segment the hyperechogenic structures of the sulci and 
falx cerebri, which remain visible during the resection and 
thus represent good corresponding elements for further reg-
istration. In the following step, parametric and nonparamet-
ric methods use the generated masks to register US volumes 
acquired at different surgical stages. Our solution reduces 
the initial mTRE for US volumes acquired at subsequent 
acquisitions in both RESECT and BITE datasets.

Materials and methods

Datasets

We used two different public datasets to validate our seg-
mentation-based registration method. Most of our experi-
ments are conducted on the RESECT dataset [14], including 
clinical cases of low-grade gliomas (Grade II) acquired on 
adult patients between 2011 and 2016 at St. Olavs University 
Hospital, Norway. There is no selection bias, and the dataset 
includes tumors at various locations within the brain. For 
17 patients, B-mode US-reconstructed volumes with good 
coverage of the resection site have been acquired. No blood 
clotting agent, which causes well-known artefacts, is used. 
US acquisitions are performed at three different phases of 
the procedure (before resection, during and after resection), 
and different US probes have been utilized. This dataset is 
designed to test intra-modality registration of US volumes 
and two sets of landmarks are provided: one to validate the 
registration of volumes acquired before, during and after 
resection, and another set that increases the number of land-
marks between volumes obtained before and during resec-
tion. Regarding both sets, the reference landmarks are taken 
in the volumes acquired before resection and then are uti-
lized as references to select the corresponding landmarks 
in US volumes acquired during and after tumor removal. 
In the RESECT dataset, landmarks have been taken in the 
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proximity of deep grooves and corners of sulci, convex 
points of gyri and vanishing points of sulci. The number of 
landmarks of the first and second sets can be, respectively, 
found in the second column of Tables 4 and 5.

In addition to RESECT volumes, BITE dataset is also 
utilized to test our registration framework [23]. It contains 
14 US-reconstructed volumes of 14 different patients with 
an average age of 52 years old. The study includes four low-
grade and ten high-grade gliomas, all supratentorial, with the 
majority in the frontal lobe (9/14). For 13 cases, acquisitions 
are obtained before and after tumor resection. Ten homolo-
gous landmarks are obtained per volume, and initial mTRE 
are provided. The quality of BITE acquisitions is lower with 
respect to RESECT dataset, mainly because blood clotting 
agent is used, creating large artefacts [14].

Methods

We used MeVisLab2 for implementing (a) an annotation tool 
for medical images, (b) a 3D segmentation method based on 
a CNN and (c) registration framework for three-dimensional 
data.

Manual segmentation of anatomical structures

The first step of our method consists of the 3D segmenta-
tion of anatomical structures in different stages of US acqui-
sitions. Both RESECT and BITE datasets are used to test 
registration algorithms and no ground truth is provided for 
validating segmentation methods. Therefore, we decided to 
conduct a manual annotation of the structures of interest 

in the US volumes acquired before resection of RESECT 
dataset. Pathological tissue was excluded from the manual 
annotation since it is progressively removed during resection 
and correspondences could not be found in volumes acquired 
at subsequent stages. On the contrary, we focused on other 
hyperechogenic (with an increased response—echo—during 
ultrasound examination) elements such as the sulci and falx 
cerebri. We consider these elements valid correspondences 
because the majority of them has a high chance to remain 
visible in different stages of the procedure.

The manual segmentations were performed on a web-
based annotation tool. As shown in Fig. 1, each RESECT 
volume can be simultaneously visualized on three different 
projections planes (axial, sagittal and coronal). The segmen-
tation task is accomplished by contouring each structure 
(yellow contour in the first frame of Fig. 1) of interest on the 
axial view. The drawn contours are then projected onto the 
other two views (blue overlay in the second frames of Fig. 1) 
so that a better understanding of the segmentation process is 
possible by observing the structures in different projections. 
The annotation process can be accomplished very easily and 
smoothly, and 3D interpolated volumes can be then obtained 
by rasterizing the drawn contours. As shown in Fig. 1, the 
contours are well defined in the axial view but several ele-
ments are not correctly included if considering the other 
two views. This is a common issue that we found in our 
annotation, which would require much time and effort to be 
corrected. However, we decided to have a maximum annota-
tion time of 2 h per volume. The obtained masks correctly 
include the major structures of interest, but some elements 
such as minor sulci are missing. Despite the sparseness of 
our dataset, we expect our training set to be good enough 
to train our model to segment more refined structures of 
interest [29, 30].

Fig. 1   Web-based annotation tool. While contouring the structures 
of interest on the axial view (yellow line in the left frame), the seg-
mentation process can be followed in real time on the other two views 

of US volumes. The annotation tool is accessible by common web 
browsers, and it has been used to obtain and then review the manual 
annotation

2  https​://www.mevis​lab.de/mevis​lab/.

https://www.mevislab.de/mevislab/
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The manual annotation was performed by the main 
author of this work (L.C.), who has two years of experi-
ence in medical imaging and almost one year in US imag-
ing for neurosurgery. Then, a neurosurgeon with many years 
of experience in the use of US modality for tumor resec-
tion reviewed and rated the manual annotations, by taking 
into account the sparseness of the dataset. According to the 
defined criteria, each volume could be rated with a point 
between 4 and 1. More precisely, a point equal to 1 means 
that the main structures (falx cerebri and major sulci) are 
correctly segmented, and only minor changes should be done 
to exclude parts of no interest (i.e., slightly over-segmented 
elements). A point equal to 2 indicates that the main struc-
tures are correctly segmented, but major corrections should 
be done to exclude structures of no interest. A point equal to 
3 indicates that main structures were missed in the manual 
annotations, which, however, are still acceptable. A score of 
4 means that a lot of major structures are missing; therefore, 
that annotation for the volume of interest cannot be accepted. 
The neurosurgeon evaluated the annotations by looking at 
the projected structures on the sagittal and coronal views of 
the drawn contours. Table 1 shows the results of the rating 
process for the volumes of interest.

Segmentation

A convolutional neural network aimed for a volumetric seg-
mentation is trained on the manual annotations. We utilized 
the original 3D U-net [29] architecture, in which few modi-
fications were made with respect to the original implementa-
tion: (a) The analysis and synthesis paths have two resolution 
steps and (b) before each convolution layer of the upscaling 
path a dropout with a value of 0.4 is used in order to prevent 
the network from overfitting. The training is conducted with 
a patch size of (30,30,30), padding of (8,8,8) and a batch size 
of 15 samples. The learning rate was set to 0.001, and the 
best model saved according to best Jaccard index computed 
on 75 samples every 100 iterations. The architecture modi-
fications, as well as the training parameters, were chosen by 
conducting several experiments and selecting those provid-
ing the best results. As training, validation and test sets, we 
split the seventeen volumes acquired before resection, which 
we annotated in the manual annotation. The split has been 
done as follows: The training set includes the volumes from 

1 to 15, the validation one the volumes from 16 to 21 and 
the test one the volumes 24, 25, 27.

After having found the best model to segment anatomi-
cal structures in pre-resection US volumes, we applied it to 
segment ultrasound volumes acquired at different surgical 
phases.

Registration

The masks automatically segmented by our trained model 
are used to register US volumes. The proposed method is 
a variational image registration approach based on [31]: 
The registration process can be seen as an iterative opti-
mization algorithm where the search of the correct regis-
tration between two images corresponds to an optimization 
process aimed at finding a global minimum of an objec-
tive function. The minimization of the objective function is 
performed according to the discretize-then-optimize para-
digm [31]: The discretization of the various parameters is 
followed by their optimization. The objective function to be 
minimized is composed of a distance measure, which quan-
tifies the similarity between the deformed template image 
and the reference one, and a regularizer, which penalizes 
undesired transformations. In our approach, the binary 3D 
masks generated by the previous step are used as input for 
the registration task, which can be seen as mono-modality 
intensity-based problem. Therefore, we chose the sum of 
squared differences (SSD) as a similarity measure, which is 
usually suggested to register images with similar intensity 
values. Moreover, to limit the possible transformations in the 
deformable step, we utilized the elastic regularizer, which 
is one of the most commonly used [31]. In our method, the 
choice of the optimal transformation parameters has been 
conducted by using the quasi-Newton l-BGFS [32], due 
to its speed and memory efficiency. The stopping criteria 
for the optimization process were empirically defined: the 
minimal progress, the minimal gradient and the relative one, 
the minimum step length were set equal to 0.001, and the 
maximum number of iterations equal to 100.

Our registration method aims to provide a deformable 
solution to compensate for anatomical changes happening 
during tumor resection. As commonly suggested for meth-
ods involving non-rigid registration tasks [31], the proposed 
solution includes an initial parametric registration used then 

Table 1   Rating of the manual 
annotations

After the contours of the main structures of interest were manually drawn, the neurosurgeons rated them 
according to criterion defined in the session “Manual segmentation of anatomical structures”. The criterion 
is defined taking into account the sparseness of the manual annotations. A point equal to 4 is given to the 
annotations where many of the main structures of interest are missing. On the contrary, if minor structures 
of interest (i.e., minor sulci) are missing but the major ones are correctly included, the best point of 1 is 
given

Volumes 1 2 3 4 6 7 12 14 15 16 17 18 19 21 24 25 27

Ranking 2 2 3 2 2 3 2 3 2 3 2 2 2 2 2 2 2
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to initialize the nonparametric one. First of all, the para-
metric approach utilizes the information provided by the 
optical tracking systems as an initial guess. Based on this 
pre-registration, a two-step approach is conducted, includ-
ing a translation followed then by a rigid transformation. In 
this stage, to speed the optimization process, the images are 
registered at a resolution one-level coarser compared to the 
original one. Then, the information computed during the 
parametric registration is utilized as the initial condition for 
the nonparametric step. In this stage, to reduce the chance to 
reach a local minimum, a multilevel technique is introduced: 
the images are registered at three different scales, from a 
third-level to one-level coarser. As output of the registration 
step, the deformed template image is provided.

Evaluation

Segmentation

In Table 1, we can see that no annotation received the best 
score of 1, but all of them have some imperfections. How-
ever, none of the manually annotated masks was scored with 
4. Consequently, we can consider our annotations as a sparse 
ground truth in which only the main hyperechogenic struc-
tures of interest are included. Regarding this, CNNs trained 
on a sparse dataset already proved to be able to segment 
more refined and numerous structures respect to the sparse 
training set [29, 30]. Therefore, we expect our annotations 
to be good enough to train the CNN model in order to gen-
erate meaningful structures for guiding the further registra-
tion step. In fact, the registration step will give an important 
feedback about the quality of the generated masks: For our 
purposes, the segmented structures are meaningful if they 
correctly guide the registration method. In addition to this, 
an analysis of the segmentation results will be provided, as 
described in the following section.

Regarding US volumes acquired before resection, no 
ground truth is available for the structures not contained 
in the manual annotations. Consequently, the DICE coef-
ficients are computed by including only the automatically 
segmented elements with correspondences to manual 
annotations and by discarding elements having no counter-
part in manually annotated data. This measure is useful to 
verify whether the main structures of interest are correctly 
segmented by the trained model. As further information, 
we also provide the DICE coefficients computed without 
excluding any structure. These values would be useful for 
a deeper analysis of our algorithm but, as aforementioned, 
they may not be so indicative for our purposes due to the 
sparseness of our dataset. Furthermore, the automatically 
generated masks should also include more refined elements 
than the original ground truth. To verify this, a first visual 

assessment of the generated masks is performed. Moreover, 
the over-segmented elements are expected to have a mean 
intensity value as close as possible to the one of the manu-
ally annotated structures. To verify this, we compared the 
mean intensity values of the manual annotations and the 
automatically generated masks.

Regarding US volumes acquired during and after resec-
tion, no manual annotation was obtained, so no DICE index 
could be computed. Therefore, to be sure that structures of 
interest are correctly segmented, we show that the masks 
of the three stages of US data segmented by our trained 
model (a) are strongly correlated in terms of volume exten-
sion by computing the Pearson correlation coefficient and 
(b) include structures with a mean intensity value similar 
to the manual annotations. Secondly, we conduct a visual 
inspection of the results, which is helpful to verify whether 
or not corresponding anatomical structures are segmented 
in these stages.

Given the fact that our annotations are not publicly avail-
able, only a qualitative comparison is made with respect to 
other methods which also proposed a US segmentation solu-
tion in the context of neurosurgery [27, 28, 30, 33].

Registration

The transformations and deformation fields computed in 
the parametric and nonparametric step are then applied to 
the landmarks contained in the datasets. The TRE values 
before and after registration are provided per each patient, 
with the measure of the closest and farthest couple of points, 
and mean and standard deviation values are also given per 
each set of landmarks. A visual inspection of the registration 
results is also shown, in which the initial registration based 
on the information of the optical tracker can be compared 
with the results obtained by our method. Moreover, a com-
parison with previous solutions is provided. Regarding this, 
some methods have been proposed to register BITE volumes 
[17, 19, 24, 25], but none of them except one [25] provided a 
generalized solution able to register volumes of both datasets 
(BITE and RESECT). On the contrary, our method provides 
an approach valid for both two datasets. For the RESECT 
dataset, the authors of [25] proposed a solution only for vol-
umes acquired before and after resection. Our approach is 
the first one to be applied to the volumes acquired before and 
during resection of RESECT dataset; therefore, no compari-
son is available for this specific set.

The capture range of our method is also computed. We 
define the capture range as the largest initial misalignment 
within which our algorithm still converges to a solution for 
80% of the cases. To evaluate it, we started the registra-
tion from multiple starting misalignments and we checked 
whether or not the method converged to a solution. Then, we 
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computed the value of the capture range by using as distance 
measure the mTRE computed on the available landmarks.

Results

Segmentation

Figure 2 shows an example of a segmented structure in a 
volume acquired before resection. It can be seen that the 
generated masks cover the locations where landmarks were 
acquired. In fact, we decided to segment sulci and falx cer-
ebri, which are the anatomical elements taken into account 
to acquire the majority of the landmarks in the RESECT 
dataset.

Regarding US data acquired before resection, Table 2a 
provides the DICE coefficients computed between the 
manually segmented structures and the corresponding 
masks generated by our trained model. In Table 2b, the 
DICE coefficients for the whole set of generated masks 
(without excluding the elements not included in the man-
ual annotation) are given. Furthermore, the first and third 
bars in Fig. 3 show that the structures automatically seg-
mented in pre-resection volumes have a mean intensity 
value very similar to those chosen in the manual annota-
tions. A similar consideration can be made for the ele-
ments considered as background (second and fourth bars 
in Fig. 3). Qualitative results also confirm this evidence. 
Figure 4 shows four examples of automatically gener-
ated masks in comparison with the corresponding manual 
annotations. In most of the cases, our method correctly 

Fig. 2   Segmentation and landmarks. Original intensity volumes 
where the generated masks (in green) and RESECT landmarks (pur-
ple squares) are overlaid. In RESECT dataset, landmarks have been 
taken in proximity of deep grooves and corners of sulci, convex 

points of gyri, and vanishing points of sulci. We chose to segment 
sulci falx cerebri, and therefore, we can see how the landmarks are 
closely located to the segmented structures

Table 2   DICE coefficients 
for volumes acquired before 
surgery

(a) Refers to the DICE coefficient computed by considering only the structures with a counterpart in the 
manual annotations. The method shows evidence of being able to properly segment the anatomical struc-
tures considered in the manual annotations. (b) Refers to the DICE values for the whole set of the automati-
cally segmented structures

Volumes 1 2 3 4 6 7 12 14 15 16 17 18 19 21 24 25 27

(a)
 Dice % 68 62 57 76 71 56 78 76 78 61 62 70 70 63 74 68 69

(b)
 Dice % 62 46 28 59 50 46 67 67 63 53 45 35 61 42 58 44 51
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segments refined elements which were not included in the 
manual annotation due to timing restriction see “Manual 
segmentation of anatomical structures”. Violet squares 
highlight some examples of these structures. Though, in 
several cases, the neural network wrongly segments patho-
logical tissue which we excluded from the manual annota-
tions (see blue squares in Fig. 4d).

For the volumes acquired during and after resec-
tion, a strong correlation exists between the extension 
of their masks segmented by the neural network and of 
the volumes before resection. In fact, the Pearson coef-
ficient between the masks of US data acquired before 
and during resection has a value of 0.90, and a value of 
0.91 for those of pre- and post-removal. As for the US 
data acquired before resection, Fig. 3 shows that the ana-
tomical structures segmented at the different stages have 
a mean intensity similar to the manual annotation (last 
four bars). Therefore, we can state that our segmentation 
method, applied to volumes acquired at different stages, 
segment structures related to each other in terms of vol-
umes extension and mean intensity values. Then, visual 
results in Figs. 5 and 6 confirm the evidence of the quan-
titative results, showing that our model trained on a stage 
of US correctly segments analogous elements in volumes 
acquired at different stages. However, qualitative results 
in Fig. 6 also show that our method often detects resection 
cavities, which have no corresponding structures in the 
pre-resection volumes.

Registration

The mean time required by the registration tasks is given in 
Table 3, together with the mean time required by each vol-
ume to be segmented by the trained model. All experiments 
are made on a computer equipped with an Intel Core i7 and 
a GeForce GTX 1080 (8 GB).

By relying on the automatically generated masks in the 
segmentation step, we registered the US volumes acquired at 
different surgical stages. First, the volumes acquired before 
and during resection are registered. Then, our algorithm is 
applied to volumes acquired during and after resection. The 
computed deformation fields are applied to the landmarks 
provided in the RESECT dataset, and the results after reg-
istration are shown in Table 4 (for volumes acquired before 
and during resection) and in Table 5 (volumes acquired 
before and after resection). Regarding the results in Table 5, 
the registration of the landmarks is performed by concat-
enating two different transformations: the one computed 
before–during US volumes together with the one for vol-
umes acquired during and after resection (see Fig. 7 for a 
more detailed description).

As it can be seen in both tables, both parametric and 
nonparametric methods reduce the initial mean registra-
tion errors provided in the RESECT dataset. In Table 4, 
it can be noticed that the proposed methodology improves 
the initial mTRE more than 2 mm, by decreasing the mean 
errors for each patient. For the second registration tasks, our 

Fig. 3   Intensity values of the masked ultrasound volumes. This graph 
presents the mean intensity values of the masked ultrasound vol-
umes (first, third, fifth, seventh bars) acquired at the three stages, and 
the mean intensity values of the area excluded by the segmentation 
(second, fourth, sixth, eighth bars). For the volumes acquired before 
resection, volumes masked with manual annotation and elements 
segmented by the neural network are compared (first four bars). The 

masked volumes have in all the cases a similar mean value, higher 
than the excluded areas. This is meaningful since our elements of 
interest are the bright (hyperechogenic) structures in the US. On the 
contrary, the even numbered bars have a similar mean intensity value, 
lower than the chosen structures. We are not interested in hypoecho-
genic structures, with look darker in the US acquisitions
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method reduces the mean registration error by nearly 1.5 mm 
(Table 5). Visual examples provided in Figs. 8 and 9 also 
confirm the numerical results. The images show the fixed 
volumes with the related segmentation (in red), together 
with the mask of the moving volumes (in green). By com-
paring the overlay before and after registration, we highlight 
the registration improvements by coloring in yellow the cor-
rect overlay of the two masks. Regarding the results on the 
RESECT dataset, only those obtained for volumes acquired 
before and after resection can be compared with another 
solution [25] (see Table 5).

Our segmentation-based registration method is then 
applied on BITE dataset, directly registering volumes 
acquired before and after resection. The results are available 

in Table 6, with a comparison to previously proposed solu-
tions (last section of Table 6). As it can be seen, also for this 
dataset the initial mTRE is reduced by both parametric and 
nonparametric registration approaches.

The value of the capture range of our method is equal to 
6.25 mm.

Discussion

The manual annotations, even if sparse, are good enough to 
train the CNN model to segment the anatomical structures 
of interest, as shown by the DICE coefficients in Table 2. 
Moreover, Fig.  4 shows that automatically generated 

Fig. 4   Segmentation of ultrasound volumes acquired before resec-
tion. In each example, the axial, sagittal and coronal views are shown 
in the first, second and third row, respectively. In the first column, 
the original ultrasound volume is exhibited, in the second column, 
the manual annotation performed on the axial view and projected in 
the other two views is shown, in the third column, the segmentation 
result obtained by the 3D U-net for the same volume of interest is 

displayed. In each example, a pointer (intersection of yellow cross-
ing lines) highlights the same volume position in the three views. Our 
method correctly segments the main structures. Moreover, structures 
wrongly not included in the manual annotations are correctly detected 
by the trained neural network (purple squares). However, in image 
d, pathological tissue correctly excluded in the original masks is 
wrongly segmented by our method (blue squares in axial view)
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segmentations are more precise than the manual annota-
tions, with a better contours refinement and larger number 
of identified structures. However, some pathological tissues 
are wrongly segmented by our method (see Fig. 4d). This 
may be due to the fact that in US data the glioma of grade 
II appears as hyperechogenic structures, with an intensity 
similar to the elements of interest. In future work, we could 

consider to separately segment pathological tissue and then 
exclude it during registration. A similar consideration can be 
made for the resection cavities in volumes acquired during 
and after resection, which appear as bright as sulci and are 
wrongly segmented by the proposed method (Fig. 6). Fur-
thermore, from a qualitative comparison with other segmen-
tation methods involving US data, we can highlight some 

Fig. 5   Segmentation of ultrasound volumes acquired during resec-
tion. After having trained the neural network on the stage before 
resection, we applied it to ultrasound volumes acquired during resec-
tion. This figure shows four examples of segmentation results, each 

containing one intensity volume together with the generated mask. It 
appears clear how the main hyperechogenic structures are correctly 
included in the segmentation
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advances of our approach. First of all, with respect to [27, 
33], a higher number of anatomical structures are included 
in our manual annotations. Therefore, the potential range 
of clinical scenarios in which our method could be applied 
might be wider. Secondly, a trained neurosurgeon has clini-
cally validated the manual annotations (Table 1). This is not 
the case for other segmentation-based methods [30, 28], in 
which no precise rating of the manual masks is provided.

The second important contribution of this work is the reg-
istration of US volumes acquired at different surgical stages. 
First of all, the segmentation method gives evidence of being 
able to generate meaningful masks to guide the registra-
tion task. In fact, the proposed registration method is able to 
reduce the mTREs of three sets of volumes from two differ-
ent datasets (Table 4, 5, 6) by using the corresponding ana-
tomical structures previously segmented. From numerical 

Fig. 6   Segmentation of ultrasound volumes acquired after resection. 
After having trained the neural network on the stage before resection, 
we applied it to ultrasound volumes acquired after resection. This fig-
ure shows four examples of segmentation results, each containing one 
intensity volume together with the generated mask. It appears clear 

how the main hyperechogenic structures are correctly included in 
the segmentation. In the last two examples (second row), we see how 
resection cavities (appearing hyperechogenic on US) are segmented 
by the 3D U-net, even they have no counterparts in the pre-resection 
stage
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and visual results, we can notice that even if minor corre-
sponding segmented elements are missing in volume pairs, 
our method is able to reduce the initial registration errors. 
However, in the case of volumes acquired after removal, 
resection cavities may be segmented by our method due to 
their intensity similar to the sulci. Consequently, the mTRE 
in Table 5 is reduced less with respect to Table 4, since 
these structures have no or few corresponding elements in 
volumes acquired in previous steps. This is a limiting factor 
of our registration method, which is completely based on 
the masks generated by our trained model. In future work, 
we could try to segment such structures and exclude them 
during the registration. Only another work [25] focused on 
the registration of US volumes acquired before and after 

resection of RESECT dataset (Table 5). The mTRE obtained 
by the aforementioned approach is better than our method, 
which, however, is the first one to provide results for the vol-
umes obtained before and during resection of the RESECT 
dataset. In this set of volumes, our registration performs 
quite well, reducing the initial mTRE to 1.36 mm.

Regarding the BITE dataset, our algorithm improves the 
initial registration (see Table 6), proving not to be over-tuned 
on RESECT dataset. Note that in contrast to our approach, 
all other methods compared in Table 6 have only been tested 
on the BITE dataset. Thus, the results may be over-tuned on 
this limited set of volumes and the approaches could lack 
generalization. On the contrary, our solution is the second 
one after [25] to propose a more generalized method, which 
has been tested on registering the volumes of both RESECT 
and BITE datasets. Therefore, our method is validated on a 
larger number of US acquisitions, providing a more gener-
alized solution. Nevertheless, there might be some reasons 
why a few other approaches have smaller average mTREs 
for the BITE dataset (last section of Table 6). First of all, a 
numerical impacting factor for our results comes from case 
12, where the TRE increases from 10.54 up to 11.08 mm, 
affecting the overall result. The capture range of our method 
is too low to register this volumes pair, which has a very 
large initial misalignment. In future work, we could improve 
the results by performing an initial registration which could 

Table 3   Mean time in seconds per task

With segmentation, we indicate the inference process in which the 
trained model generates the mask of a volume given in input. The 
other two values are related to the registration tasks, including the 
time of both the parametric and nonparametric approaches

Mean time (in s) per each task

Segmentation (infer-
ence)

Total registration 
time (US before–dur-
ing)

Total registration time 
(US during–after)

1.28 28.55 29.40

Table 4   Registration errors on 
RESECT dataset

Mean registration errors between ultrasound volumes acquired before and during resection. Original dis-
tances are compared to the results obtained with our segmentation-based registration

Mean distance (range) in mm before versus during (RESECT dataset)

Patient Number of 
landmarks

Mean initial distance Mean distance after para-
metric registration

Mean distance after 
nonparametric registra-
tion

1 34 2.32 (1.49–3.29) 0.93 (0.31–1.73) 0.89 (0.22–1.57)
2 16 3.10 (1.79–5.19) 1.54 (0.37–3.58) 1.69 (0.71–4.19)
3 17 1.93 (0.67–3.02) 1.20 (0.36–2.47) 1.14 (0.24–2.45)
4 19 4.00 (3.03–5.22) 0.89 (0.31–1.86) 0.83 (0.24–1.65)
6 21 5.19 (2.60–7.18) 1.95 (0.63–3.71) 1.80 (0.58–3.61)
7 22 4.69 (0.94–8.16) 2.50 (1.24–5.78) 2.39 (1.15–5.86)
12 24 3.39 (1.74–4.81) 1.57 (0.43–3.20) 1.58 (0.44–3.36)
14 22 0.71 (0.42–1.59) 0.52 (0.09–1.15) 0.52 (0.12–0.93)
15 21 2.04 (0.85–2.84) 0.80 (0.28–1.44) 0.73 (0.18–1.31)
16 19 3.19 (1.22–4.53) 1.52 (0.95–2.21) 1.40 (0.75–2.43)
17 17 6.32 (4.65–8.07) 2.93 (1.67–4.46) 2.51 (1.14–4.03)
18 23 5.06 (1.55–7.44) 1.75 (0.70–3.04) 1.29 (0.46–2.81)
19 21 2.06 (0.42–3.40) 1.93 (0.20–3.19) 1.33 (0.48–2.67)
21 18 5.10 (3.37–5.94) 1.27 (0.19–3.53) 1.22 (0.19–3.46)
24 21 1.76 (1.16–2.65) 0.89 (0.18–2.17) 0.81 (0.08–2.07)
25 20 3.60 (2.19–5.02) 3.56 (2.09–5.14) 2.27 (1.04–3.92)
27 16 4.93 (3.61–7.01) 0.77 (0.24–1.35) 0.71 (0.19–1.26)

Mean value Mean value Mean value
3.49 ± 1.55 1.56 ± 0.82 1.36 ± 0.61
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increase the capture range of our method. Moreover, the 
limited improvement obtained by our method might be due 
to the lower quality of the BITE dataset with respect to the 
RESECT volumes, which is used for training the segmenta-
tion approach. Since our registration method is based on the 
generated masks, it is almost impossible for the registration 
method to converge to the right solution if the segmented 
masks are not accurate enough.

The total time required by each task of our method is 
visible in Table 3: The segmentation step requires 1.28 s 
and 28.55 s (before/during) and 29.40 s (during/after) that 
are needed to register the generated 3D masks. In addi-
tion to this, we should also take into account the time to 
reconstruct a 3D US volumes from 2D images, which is of 
a few seconds [14]. Considering the increase in the brain 
shift over the time and the average duration of a neuro-
surgical procedure [34], our algorithm is fast enough to 

Table 5   Registration errors on RESECT dataset

Mean registration errors between ultrasound volumes acquired before and after resection. Original distances are compared to the results obtained 
with our segmentation-based registration. Moreover, a comparison is made with a previous method proposed to solve this task

Mean distance (range) in mm before vs. after (RESECT Dataset)

Patient Number of landmarks Mean initial distance Mean distance after parametric 
registration

Mean distance after 
nonparametric registra-
tion

1 13 5.80 (3.62–7.22) 2.69 (0.93–4.08) 2.67 (0.75–4.18)
2 10 3.65 (1.71–6.72) 2.32 (0.90–4.25) 2.18 (0.55–3.93)
3 11 2.91 (1.53–4.30) 1.63 (0.82–2.48) 1.53 (0.82–2.25)
4 12 2.22 (1.25–2.94) 1.05 (0.46–1.95) 1.06 (0.30–2.05)
6 11 2.12 (0.75–3.82) 1.91 (0.47–3.06) 1.88 (0.24–2.93)
7 18 3.62 (1.19–5.93) 2.29 (0.92–4.13) 2.08 (0.70–3.93)
12 11 3.97 (2.58–6.35) 1.60 (0.54–4.73) 1.44 (0.61–4.51)
14 17 0.63 (0.17–1.76) 0.63 (0.11–1.84) 0.57 (0.09–1.52)
15 15 1.63 (0.62–2.69) 0.85 (0.12–2.13) 0.88 (0.23–2.38)
16 17 3.13 (0.82–5.41) 2.40 (0.61–4.70) 2.14 (0.79–4.35)
17 11 5.71 (4.25–8.03) 3.82 (2.36–6.68) 3.40 (1.91–6.28)
18 13 5.29 (2.94–9.26) 2.19 (1.14–4.32) 1.51 (0.65–2.92)
19 13 2.05 (0.43–3.24) 4.00 (1.42–14.27) 3.97 (0.91–15.29)
21 9 3.35 (2.34–5.64) 1.23 (0.29–3.20) 1.18 (0.28–3.16)
24 14 2.61 (1.96–3.41) 0.86 (0.18–2.26) 0.79 (0.13–2.02)
25 12 7.61 (6.40–10.25) 5.75 (4.39–8.34) 3.88 (2.74–6.07)
27 12 3.98 (3.09–4.82) 3.77 (2.22–5.10) 3.76 (2.24–5.30)

Mean value Mean value Mean value
3.54 ± 1.75 2.29 ± 1.37 2.05 ± 1.12

Other methods mTRE after registration

[25] 1.49 mm

Fig. 7   Registration of different US volume pairs. Instead of register-
ing directly pre-resection US data with those after resection (continu-
ous line), a two-step method (dotted arrows) is proposed by including 
the US volumes acquired during resection. The final transformation 

from before to after resection volumes is obtained by concatenating 
two different registrations results (US before resection to US during 
resection + US during resection to US after resection)
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register US volumes and therefore provides a meaningful 
solution for brain shift. Nevertheless, in future work we 
could optimize our algorithm in order to speed up the 
registration step.

Conclusion

To the best of our knowledge, our solution is the first 
one to propose a segmentation-based registration method 

Fig. 8   Registration results for before and during resection volumes. 
The images show four examples of registration by combining fixed 
volumes (during resection) with its segmented structures (in red) and 
the segmented elements of moving volumes acquired before resec-
tion (in green). In the first column of each example, we show the seg-

mentation overlay according to the original information. The second 
column displays the overlay of the segmented structures after regis-
tration. By highlighting in yellow the correct overlap of segmented 
structures, we can see how the structures are more aligned after the 
performed registration
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which registers US volumes acquired at different surgical 
stages. Our approach provides some important contribu-
tions. Regarding the segmentation step, a model based on 
a 3D U-Net has been trained on a large number of anatomi-
cal structures, whose manual annotations have been vali-
dated by an experienced neurosurgeon. Even if the training 
is performed on a sparse set of annotations, the proposed 
solution is able to automatically segment hyperecho-
genic elements in US volumes. Moreover, the segmented 

anatomical structures prove to be meaningful elements 
which can guide the registration of US volumes acquired 
in the neurosurgical context. In fact, for two different data-
sets of US volumes acquired at different surgical stages, 
the initial mTREs are correctly reduced, demonstrating 
that our solution is not over-tuned for a specific dataset. 
Moreover, our work is the first one to be applied also on 
the US volumes of RESECT dataset acquired during resec-
tion, for which no previous work has been published.

Fig. 9   Registration results for before and after resection volumes. 
These images show four examples of registration by combining fixed 
volumes (after resection) with its segmented structures (in red) and 
the segmented elements of moving volumes acquired before resection 
(in green). In the first columns of each example, we show the seg-

mentation overlay according to the original information. The second 
column displays the overlay of the segmented structures after regis-
tration. By highlighting in yellow the correct overlap of segmented 
structures, we can see how the structures are more aligned after the 
performed registration
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