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Abstract
Purpose We investigate the feasibility of reconstructing ultrasound images directly from raw channel data using a deep
learning network. Starting from the raw data, we present the network the full measurement information, allowing for a more
generic reconstruction to form, as compared to common reconstructions constrained by physical models using fixed speed of
sound assumptions.
Methods We propose a U-Net-like architecture for the given task. Additional layers with strided convolutions downsample
the raw data. Hyperparameter optimization was used to find a suitable learning rate. We train and test our deep learning
approach on plane wave ultrasound images with a single insonification angle. The dataset includes phantom as well as in vivo
data.
Results The images produced by our method are visually comparable to ones reconstructed with the conventional delay and
sum algorithm. Deviations between prediction and ground truth are likely to be related to speckle noise. For the test set, the
mean absolute error is 4.23± 1.52 for the phantom images and 6.09± 0.72 for the in vivo data.
Conclusion The result shows the feasibility of our approach and opens up new research directions regarding information
retrieval from raw channel data. As the networks reconstruction performance is limited by the quality of the ground truth
images, using other ultrasound reconstruction technique or image types as target data would be of interest.
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Introduction

Recently, deep learning networks are explored as a replace-
ment for ultrasound-related processing tasks like reconstruc-
tion, segmentation or compression. One important question
arising when designing such networks is what kind of data
representation to use as an input. Simson et al. [1] provided
time-delayed scanline ultrasound data to a fully convolu-
tional neural network and mapped them to ground truth
images given by minimum variance beamforming. Beam-
formed data were used in [2] to learn a better compounding
for plane wave imaging. Using raw radiofrequency channel
data as input was proposed by Nair et al. [3,4] for anechoic
cyst segmentation.
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Using already processed data instead of raw data has some
advantages. First, dependent on the sampling rate, the raw
data are often of a bigger size, which can cause memory
issues while training networks. Second, processing steps like
beamforming transform the raw data into a spatial domain
where direct correspondence to the ultrasound image is given.
On the other hand, all kinds of preprocessing steps work with
constraints. For instance, the beamforming step in the popular
delay and sum reconstruction algorithm assumes a constant
speed of sound. This does not exactly represent the reality as
most scanned tissues are composites.

In this short communication, we present our work on
reconstructing nonoblique plane wave ultrasound images
directly from unprocessed raw channel data using convolu-
tional neural networks. By using the raw data instead of the
beamformed data as the input, we give the network access to
full measured information and the opportunity to learn a dif-
ferent way of beamforming. Similar approaches are pursued
by Nair et al. [3,4] but with a main focus on segmentation
rather than on reconstruction. Furthermore, they used simu-
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lated raw data showing only one subject per frame, whereas
we train and test our network on both diverse phantom and
in vivo data.

Methods

Data We acquired 2183 plane wave ultrasound images with
a single parallel plane wave insonification using a DiPhAS
ultrasound device (Fraunhofer Institute for Biomedical Engi-
neering, St. Ingbert, Germany) with a linear 128-element
transducer. Besides the images, which are reconstructed by
the device with the delay and sum algorithm, also the respec-
tive raw data were recorded; 1281 images depict a phantom
(Model 054GS, CIRS, Norfolk, USA) with acoustic scatter-
ers of different sizes and reflectivities, and 902 show in vivo
data of the abdominal area. The maximum penetration depth
for all images was set to 92.4 mm, which corresponds to
4800 raw data samples given a sampling rate of 40 MHz.
The pitch of 0.3 mm between the single transducer elements
defines the image width of 38.4 mm. The ultrasound images
were of size 800 px × 256 px with intensities in the range
[0, 255].

As images were acquired in different sessions, not all of
them display the whole depth of 92.4 mm. For those with a
smaller depth, the pixel resolution was not changed but the
raw data as well as the image data were filled up with zeros.
We split the dataset randomly in 70% training, 10% valida-
tion and 20% test data. Each subsplit contained phantom as
well as in vivo data.

Model A four-level U-Net with some adaptions was uti-
lized.Model definition was done with the Keras engine using
the tensorflow backend. In order to handle the large differ-
ence in size between the raw data input and the image data
output, two convolutional layers with strides 2 and 3 were
added. Compared to [3], where the raw data were resampled
to a smaller size, we hypothesize that the strided convolu-
tions adapt to the downsampling task more efficiently and
with lower loss of information. Five fully connected layers
with decreasing numbers of neurons at the end of the net-
work summarize the information in the different channels.
In the downpath, LeakyReLu was used as activation func-
tion assuming that this will help the network to process the
raw data input which can also be negative. We also used
batch normalization before the activation layers and dropout
with rate 0.1. As loss function, we used the ultrasound loss
defined in [1], which is a combination of the peak signal-
to-noise ratio and the multiscale structural similarity index
(MS-SSIM). All training runs were performed with Adam
as optimizer and batch size of 4, which was the maximum
achievable size due to memory constraints.

In order to find a suitable learning rate for the network, we
did hyperparameter optimization as described in [5], which

Ground Truth

MAE: 4.33
MS-SSIM: 0.91

Prediction Difference ·5

MAE: 5.7
MS-SSIM: 0.91

Fig. 1 Qualitative comparison between ground truth computed with
delay and sum and predicted reconstruction with our network. The
examples are taken from the test set. The mean absolute error and the
multiscale structural similarity index comparing the prediction to the
ground truth are given. The difference images on the right display the
absolute difference between ground truth and prediction (scaled by a
factor of 5 for better visibility)

combines Bayesian optimization and Hyperband. We sam-
pled 15 different configurations with learning rates between
10−2 and 10−6 and evaluated them on different budgets
according to the Hyperband scheme. A learning rate of
2.85 × 10−4 showed the best performance and was used
for training the final network. We stopped the training after
20 epochs since no substantial performance gain either in the
validation nor the training loss was visible.
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Ground Truth Prediction Difference ·5

Fig. 2 Enlarged sections that are marked in Fig. 1 by green boxes. The
circles mark the regions that are used for an exemplary CNR computa-
tion (blue: signal, red: background)

Table 1 Performance metrics evaluated on the test set

Phantom In vivo

MAE 4.23± 1.52 6.09± 0.72

MS-SSIM 0.91± 0.04 0.9 ± 0.01

Results

Figure 1 displays a qualitative comparison of our networks
reconstruction and the ground truth. Both predicted images,
the phantom on the top and the in vivo image on the bottom,
are visually comparable to the ground truth. The difference
images between ground truth and prediction showonlyminor
deviations, which are likely to be related to the speckle noise
pattern, which is reduced in the predicted images. Load-
ing the network takes around 1.92 s, while inference on the
graphic card (Nvidia GeForce RTX 2070) needs on average
0.02 s or approximately 50 frames per second.

An exemplary contrast-to-noise ratio (CNR) calculation
following the definition in [6] was done, comparing the
intensity of a phantom scatterer with the background. The
respective regions are marked in Fig. 2 by colored circles.
Here, the CNR for the prediction is with 19.27 dB slightly
better than for the ground truth (17.94 dB).

For quantitative evaluation of the performance, Table 1
displays the mean and standard deviation of the mean abso-
lute error (MAE) and the MS-SSIM for all images in the test
set. The low values for the MAE and values of the MS-SSIM
close to one support the qualitative impression of similarity
of ground truth and prediction.

Conclusion

We introduced a neural network architecture reconstructing
ultrasound images directly from the raw channel data. The
results show the feasibility of this approach as the recon-
struction from the network is of similar quality as the ground
truth. One restriction of our approach is the quality of the tar-
get data: As the network is trained on images obtained with

the delay and sum algorithm, it could hardly perform better
than the reference reconstruction technique.

Therefore, for further investigations about the potential
that lies in the full information content of the raw data, we
would like to replace the target ultrasound image. Suitable
candidates could be images showing other ultrasound con-
trasts or, in the case of plane wave imaging, are reconstructed
using more insonification angles. Even images from other
modalities like magnetic resonance imaging could be used.
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