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Abstract
Purpose Neurosurgeons can have a better understanding of surgical procedures by comparing ultrasound images obtained at
different phases of the tumor resection. However, establishing a directmapping between subsequent acquisitions is challenging
due to the anatomical changes happening during surgery. We propose here a method to improve the registration of ultrasound
volumes, by excluding the resection cavity from the registration process.
Methods The first step of our approach includes the automatic segmentation of the resection cavities in ultrasound volumes,
acquired during and after resection. We used a convolution neural network inspired by the 3D U-Net. Then, subsequent
ultrasound volumes are registered by excluding the contribution of resection cavity.
Results Regarding the segmentation of the resection cavity, the proposed method achieved a mean DICE index of 0.84 on
27 volumes. Concerning the registration of the subsequent ultrasound acquisitions, we reduced the mTRE of the volumes
acquired before and during resection from 3.49 to 1.22 mm. For the set of volumes acquired before and after removal, the
mTRE improved from 3.55 to 1.21 mm.
Conclusions We proposed an innovative registration algorithm to compensate the brain shift affecting ultrasound volumes
obtained at subsequent phases of neurosurgical procedures. To the best of our knowledge, our method is the first to exclude
automatically segmented resection cavities in the registration of ultrasound volumes in neurosurgery.

Keywords Ultrasound · Image-guided surgery · Resection cavity · Deep learning · Neurosurgery

Introduction

In the neurosurgical planning for tumor resection, preoper-
ative magnetic resonance imaging (MRI) data are usually
acquired [1, 2]. Subsequently, neuronavigation systems are
utilized to make these images available during the tumor
resection. Through a rigid transformation computed between
the surgical scene and the MRI data, neurosurgeons are able
to map any intracranial position to the preoperative data.
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This is beneficial for the surgery outcome, since it decreases
the risk of tumor residuals and increases the survival rate of
the operated patients. However, image-guided surgery based
only on preoperative data has some limitations [3]. In the
early stages of the procedure, inaccuracies in the neurosur-
gical setting can degrade the rigid registration computed by
the neuronavigation systems. Moreover, during the ongoing
procedure, several anatomical modifications take place and
the observed surgical scene modifies compared to the preop-
erative data. In the early stages of the surgery, the opening of
the dura mater is responsible for the leakage of cerebrospinal
fluid that heavily modifies the brain structure. Additionally,
the resection of the tumor leads to other anatomicalmodifica-
tions, with no counterpart in the preoperative data. All these
effects combined together are denoted as brain shift [3]. This
phenomenon impedes a correct mapping between preopera-
tive data and surgical scene. Consequently, the probability of
missing pathological tissue in the resection increases, reduc-
ing the survival rates of the operated patients [4, 5].
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To compensate the brain shift, intra-operative images can
be acquired to provide an update of the resection scene
[6]. The most common intraoperative solutions are given
by MRI and ultrasound (US) modality. Intraoperative MRI
(iMRI) data give a good image contrast between healthy and
pathological tissues [7, 8], but it has the disadvantages to
be expensive, to require special adaptation in the operat-
ing room (OR) and to be relatively long to be acquired. A
valid alternative is given by intraoperative US (iUS), which
is inexpensive, fast and practical to obtain [9, 10]. However,
the understanding of the US data can be challenging [11],
in particular if compared to the image quality obtained by
MRI modality. To overcome this problem, neuronavigation
systems can provide a direct mapping between preoperative
MRI and iUS. By observing the same structures in two differ-
ent imaging modalities, a better understanding of the tissues
is also possible.

Additionally, a source of artifacts negatively affecting iUS
is related to the resection cavity (RC), which appears in the
ongoing procedure [11]. To perform US acquisitions after a
first resection, a saline water solution is used to fill the oper-
ative cavity. When the US probe is used, the attenuation of
sound waves in tissue is higher than in the saline water solu-
tion used for coupling. Consequently, hyperechoic artifacts
appear, especially at the bottom of the resection cavity. They
negatively affect the interpretation of the images, since they
can bewrongly seen as pathological tissue. Therefore, toward
the end of the resection, it becomes extremely important to
identify these artifacts. As a solution, US volumes can be
obtained at different time points of the resection, without a
delay in the surgical procedure [2]. By tracking theUS probe,
neuronavigation systems compute a registration of the US
volumes acquired at different phases of the resection. Then,
the US data obtained at the end of the surgery can be com-
pared with the early stage acquisitions [11], in which the
artifacts related to the resection did not appear yet. Thus, the
image interpretation becomes easier. Nonetheless, the direct
comparison between subsequent phases is challenging due to
the brain shift, which can only be compensated by a non-rigid
solution [1, 12]. The registration provided by the neuronavi-
gation systems is often not accurate, since it does not take into
account anatomical modifications [1]. Therefore, this task is
an open issue and a solution is still needed.

The registration of US volumes acquired at different
resection stages is challenging, since the brain undergoes
anatomical modifications, such as the emerging resection
cavity, which have no counterpart in the data acquired at
the beginning of the surgery (Fig. 1). A few registration
solutions, which take into account the missing correspon-
dences between the different acquisitions, have been already
proposed. In [13], the authors suggested a non-rigid reg-
istration algorithm that models the deformation field with
free-form cubic B-splines. In the cost function, the similarity

Fig. 1 Ultrasound images acquired before (a) and after (b) resection.
During the ongoing resection, the tumor is gradually removed and the
cavity of the resection appears. The resection cavity is usually filledwith
saline water, which appears usually hypoechogenic in US acquisitions.
The extension of the resection is usually recognizable by a hypere-
chogenic contour. By comparing images a, b, we can notice that other
anatomical elements remain visible, even if deformed due to brain shift
effect. On the contrary, the resection cavity has no specific counterpart
in the initial acquisitions. In the process of registering the two images,
it would be beneficial to exclude the non-corresponding elements of the
resection cavity and rely only on the structures which remain visible
among subsequent acquisitions

metric is based on the normalized cross-correlation (NCC).
They also introduced a method to suppress the effect of non-
corresponding regions between the pre- and post-resection
ultrasound volumes. The outlier detection is based on the
standard deviation of the NCC gradients. The same approach
has been applied in [14]. The authors in [15] advised an
improvement compared to [13]. They proposed a symmetric
deformation field and an efficient second-order minimization
for a better convergence of the method. Moreover, an out-
lier detection to discard non-corresponding regions between
volumes is proposed. Their approach starts from the one
applied in [13] and adds an additional feature to improve
the accuracy of outlier detection. Another solution consid-
ering also the resection cavity has been proposed by [16]
to tackle the registration of pre- and intra-operative MRI
images. Their framework is based on the Demons algorithm
using an anisotropic diffusion smoother. The resected tissues
in intra-operative data are detected with a level set method
and then integrated into the smoother as a diffusion sink.

Furthermore, the effect of the outliers can be reduced
by feature-based methods, limiting the registration only
to corresponding elements. In [17], the authors proposed
a feature-based registration approach where correspond-
ing images features are computed in US pairs. Afterward,
they used them to estimate a dense mapping through the
images. The authors utilized several datasets to test the
validity of their approach. Besides, the authors in [18] pro-
posed a segmentation-based method. In the first step of their
approach, they introduced an automatic segmentation of cor-
responding elements (sulci and falx cerebri) in subsequent
US acquisitions. Then, their registration solution is only
based on the automatically generated masks. In this way,
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they discarded the non-corresponding elements by focusing
on structures available in the different acquisitions. A sim-
ilar approach has been proposed in [19], where the authors
applied a distance transform on the generated segmentation
of the sulci and falx cerebri. Then, the transformed masks
were registered.

We here propose a solution to register subsequent US vol-
umes by discarding the non-corresponding elements from the
registration process. In our approach, a 3D convolution neu-
ral network is utilized to segment the cavities generated with
the tumor removal. Then, in the following step, the generated
masks are used to discard the contribution of the resection
cavity from the registration process. We expect the proposed
registration approach to achieve better results than the same
method not excluding the resection cavity. Regarding the seg-
mentation step, to the best of our knowledge only the authors
in [20, 21] proposed a solution for this task. In [21], they
described a method based on a 2D U-Net to segment the
resection cavity in US volumes. Besides, in [20] they also
demonstrated that the 3D architecture achieves better results
than a 2D approach. The mean time required from their 3D
neural network to process a volume is around 5 min, mak-
ing the application of their method not feasible in clinical
scenario. For both their methods, the authors used a private
ground truth to train their neural network.

Material andmethods

Datasets

We utilized two publicly available datasets containing US
acquisitions obtained at different stages of tumor resection
[1, 12]. In both datasets, manually annotated landmarks
are given for testing registration algorithms. The RESECT
dataset [1] includes US volumes acquired at three different
stages of the resection. As mentioned in the original publica-
tion, we indicate with before resection the acquisition at the
beginning of the neurosurgery, when the dura mater is typi-
cally intact. After an initial resection is performed, a further
acquisition is performed, and we refer to it as during resec-
tion. At the end of the resection, neurosurgeons verify if any
pathological tissue is left, and the performed acquisitions are
referred to as after removal. To have more details about the
initial mean target registration error (mTRE) and the num-
ber of landmarks per each pair of volumes, please refer to
Tables 2 and 3. The BITE dataset [12] was released before
the RESECT one and contains volumes acquired before and
after resection. Ten landmarks are provided per each pair of
volumes, and initial mTRE is provided in Table 4. The qual-
ity of the images of BITE dataset is lower compared to the
more recent RESECT dataset, as observed by [1]. Moreover,
as observed by [20], the acquisitions protocols of this dataset

differ from the one in the RESECT data (more details in
Fig. 7).

Manual annotations

Noground truth for resection cavity segmentation is provided
in the aforementioned datasets. Thus,wedecided tomanually
annotate 27 volumes of the RESECT dataset, acquired dur-
ing and after resection. To manually annotate the resection
cavities in the US volumes, we utilized MEVIS Draw1 (see
Fig. 2).With this tool, the volumeof interest can be visualized
in three main projections and the user can choose the more
appropriate one for performing the manual segmentation
(Fig. 2a). If the annotation is executed on non-adjacent slices,
an interpolation automatically fills in contour on slices not yet
annotated. This reduces the time needed for the annotation
procedure, making 3D segmentation very efficient. Further-
more, the user has always the chance to observe the manual
annotation in three different views (b), in which the drawn
contours are projected. In case a modification is needed, the
user can modify the manual annotation in any of the three
views. Then, the interpolation is processed again. Two raters
(L.C. and D.M.) annotated the resection cavities in the vol-
umes of RESECT specified in Table 1 (Fig. 3). The author
L.C. has two years of experience with ultrasound data, and
the co-author D.M. is a neurosurgeon with a long experience
in the use of US for tumor resection [18]. The masks gener-
ated by the intersection of the two manual segmentations are
available at the following link (https://owncloud.fraunhofer.
de/index.php/s/sv5je6Rkm4uYr7s).

Automatic segmentation

We used the clinically revised masks as a ground truth to
train a convolution neural network (CNN). CNNs are a class
of artificial neural networks that automatically and adaptively
learn spatial hierarchies of features from images in order to
solve specific tasks (classification, segmentation, etc.) [22].
CNN is generally composed by three types of blocks: convo-
lution, pooling and fully connected layers. In a training phase,
the generated outputs are compared with the ground truth
and a loss function is defined to measure the performance
of the CNN. Thanks to a backpropagation algorithm, the
trainable parameters are iteratively changed in order to mini-
mize the loss function and therefore to reduce the difference
between generated outputs and ground truth. A stochastic
gradient descent optimization algorithm is usually used. For
the segmentation task, we utilized a neural network whose
architecture is based on the 3D U-net [23]. It consists of an
analysis path to capture anatomical context and a symmetric

1 https://www.mevis.fraunhofer.de/en/research-and-technologies/
image-and-data-analysis/mevis-draw.html.
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Fig. 2 Annotation tool. The contour of the structure of interest is drawn
on a specific view (a). After having drawn contours on a limited number
of images, an interpolation automatically computes the contours on the

remaining slices. In the process of segmenting the element of interest on
a specific projection (a), the corresponding contour can be visualized
in the other two views (b)

Table 1 DICE coefficient for the segmentation of the resection cavity

Training set

Volume 2 a 2 d 3 a 4 a 7 a 7 d 12 d 15 a 16 a 16 d 17 a 18 a 19 a 21 a 24 a 25 d 27 a

DICE 0.91 0.91 0.85 0.88 0.89 0.7 0.88 0.82 0.88 0.82 0.91 0.90 0.95 0.95 0.86 0.87 0.92

Validation set Test set

Volume 1 a 14 a 17 d 19 d 21 d 6 a 6 d 12 a 18 d 25 a

DICE 0.76 0.88 0.75 0.75 0.71 0.88 0.88 0.88 0.26 0.86

The first part of the table is related to the training set, whereas the second one for the validation and test sets. The second row of each table indicates
the RESECT US volumes of interest: Each volume is indicated by a number, specifying its related case in the dataset, followed by a letter. The
letter indicates if the volume of interest is related to the acquisition performed during (d) or after (a) resection. For example, 4 a is used for the
volume belonging to Case 4 acquired after resection. The third row indicates the computed DICE indices

Fig. 3 Manual segmentation. Two raters annotated the masks of interest. As an example, a the image of an original intensity volume. In b (first
rater) and c (second rater), the two different versions of the manual segmentation of the corresponding resection cavity are provided

synthesis path to achieve a precise localization the structures
of interest. An image is given in input to the contracting (anal-
ysis) path. Here, each layer has two convolutions followed
by an activation function and a max pooling: Feature maps
are extracted from the image passing through the first part
of the network. Then, in the expanding (synthesis) path, the
image is upsized to the original size. Each layer consists of

an upconvolution followed by two convolutions and activa-
tion function. In the synthesis path, at each level the upsized
image is combined with the corresponding high-resolution
features extracted in the contracting path. In output of the
neural network, a volumetric mask is generated and an error
between the generated mask and ground truth is computed.
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Fig. 4 Example of automatic segmentation in a volume acquired during
resection. a The original intensity volume, on which a manual annota-
tion has been drawn (in green) (b). The automatically computedmask is

visible in c (in pink), whereas a direct comparison between the ground
truth and the generated masks is given (d)

With respect to the original implementation, some modi-
fications were empirically made: The analysis and synthesis
paths have three resolution steps and before each convolution
layer of the upscaling path a dropout with a value of 0.3 is
used in order to prevent the network from overfitting. Addi-
tionally, we utilized the Tversky loss function [24] which
penalizes the false-negatives and thus advantages the over-
segmentation of the foreground structures. We decided to
train with this loss function because it has been shown to
achieve good results in case of an unbalanced dataset. The
training of the CNN is conducted with patches of size (48,
48, 48), a padding of (20, 20, 20) and a batch size of 5 sam-
ples. The learning rate was set to 0.0005. Additionally, we
divided the annotated volumes into three groups (more details
in Table 1). The first set (training set) includes 17 volumes
(60% of the total volumes) and is used to train the neural
network. The second one is disjoint from the training set
and includes 5 volumes (20% of the dataset): It is utilized to
validate the trained algorithm on volumes different from the
one used for training. Then, after the best model has been
saved, the network is applied on a test set (5 volumes) not
used during validation and training. To evaluate the effects
of differences in the segmentation on the registration results,
two 3D U-Net models are trained, each using the annotation
manually segmented by a different rater.

As commonly happens in medical images, in our dataset
the positive voxels of the foreground are in minor quantity
than the background ones, and thismay slow the learning pro-
cess of the neural network. To speed the training, we decided
to alter the composition of the patches used to train the neural
network. Thus, during the training and validation processes,
wedecided to feed the networkwith 20%ofpatches including
only the background. The rest of the 80% includes patches
containing at least a pixel with the foreground label. In our
experiments, the Tversky loss had often the effect of pro-
ducing an over-segmentation of structures of interest. The
resection cavity is usually a closed isolated structure, with
no dispersed elements. Therefore, we applied a connected
component analysis on the automatically generated masks,
to keep only the biggest segmented structure, corresponding
to the resection cavity.

Registration

In the proposed solution, the volume acquired before resec-
tion represents the template (moving) image which is
deformed to match the reference (fixed) one, respectively,
the data acquired during or after resection. The proposed
solution is based on [25], where the registration of two vol-
umes is treated as an iterative optimization algorithm. In

123



1968 International Journal of Computer Assisted Radiology and Surgery (2020) 15:1963–1974

Fig. 5 Example of automatic segmentation in a volume acquired after
resection. a The original intensity volumes, on which a manual annota-
tion has been drawn (in green) (b). The automatically computedmask is

visible in c (in pink), whereas a direct comparison between the ground
truth and the generated masks is given (d)

Fig. 6 Worst-case segmentation.
This figure is a visual inspection
of the volume 18 during
resection for which we obtained
the worst DICE index. The
green contour is related to the
ground truth, whereas the purple
one to the automatic
segmentation. The generated
mask is smaller compared to the
manual annotation

this scenario, the correct registration of the two images cor-
responds to the global minimum of a discretized objective
function: This includes a distance measure, determining the
similarity between the deformed template and the reference
image, and a regularizer, which penalizes undesired trans-
formations. In addition to the moving and fixed images, the
proposed method uses an additional input (mask). The parts

excluded from the masks are usually those not in common
in both acquisitions. Thus, the contribution to the distance
measure is limited to the areas for which the segmentation is
available.

In our solution, we use the quasi-Newton l-BGFS [26] to
guide the optimization process and the normalized gradient
field (NGF) as the distancemeasure. The stopping criteria for
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Fig. 7 Segmentation results on resection cavity with an open border.
This figure shows the result of the automatic segmentation (purple bor-
der) on a BITE dataset volume. The background surrounding the US
cone is colored in orange. By looking at the positions pointed by the
green arrows, we can see how a side of the resection cavity is not sur-
rounded by a hyperintense contour: The US probe is directly inserted in
the RC, and this side of the cavity has no enhanced border. The acqui-

sition procedure of the volumes included in BITE dataset differs from
the RESECT one, in which the resection cavities is always surrounded
by a hyperintense contour. Our segmentation algorithm correctly seg-
ments the structure of interest when it is surrounded by a hyperintense
element. However, it under-segments the part of the cavity where no
hyperintense border is available (the hypointense parts pointed by the
arrows should be included within the purple border)

the optimization process are empirically decided: The mini-
mal progress, the minimal gradient and the relative one, the
minimum step length were set equal to 0.001, and the max-
imum number of iterations is equal to 100. The algorithm
takes in input two original intensity volumes. Besides, the
automatically generated masks are provided as third input.
The area of the resection cavity is excluded from the com-
putation of the distance measure: This represents the only
element not in common between the two input images, and
its exclusion may improve the registration output. Moreover,
as suggested by [27] and [28], the background outside the US
beam is also discarded. The proposed approach is initialized
by a rigid registration, followed by a deformable approach. In
the first step, the volumes are directly registered at one fixed
level coarser than the original scale, in order to improve the
speed of the algorithm. A transformation matrix is obtained
and then utilized for initializing the deformable registration.
In the second step, we utilized the curvature regularizer to
limit the range of possible transformations [25]. To avoid
local minima in the optimization and to speed the computa-
tion, the volumes are registered from a third coarse level, in
which computations are cheap, until the fine level. Besides,
to estimate the effects of the inter-variation in the segmenta-
tion on the registration results, we test the method with the
two versions of the masks generated by the two 3D U-Net
models. We would like to check how much the differences
in the masks to be excluded affect the registration results.

In our experiments, we also tested a solution not excluding
the resection cavity from the registration.

Results

Segmentation

Table 1 shows the DICE coefficients for the segmentation of
the resection cavity for the 3D U-Net model obtaining the
best mean value. Overall, the mean DICE coefficient is 0.84.
Visual results are available in Figs. 4 and 5, respectively,
for the case 2 acquired during resection and for the case 27
acquired after resection. Each figure shows the related vol-
ume in three projections.Tomaintain agood tradeoff between
the visibility of the surrounding anatomical structures and
visualization of the mask of the resection cavity, we decided
to highlight the element of interest with a border in green
(ground truth) and purple (automatic segmentation). Figure 6
shows the segmentation results for the volume 18 acquired
during resection (18 d in Table 1), for which the worst DICE
coefficient (0.32) has been obtained. In the figure, we show
the overlay between ground truth and automatic segmenta-
tion.

After having trained the neural network on the RESECT
dataset volumes, we applied it to volumes after resection of
BITE dataset. As observed by [20], the acquisitions method-
ologies and the quality of the volumes are different between
the two datasets. The cavity is sometimes partially visible
in BITE dataset, whereas on the contrary in the RESECT
volumes it is always completely observable and usually sur-
rounded by a bright border. In Fig. 7, we show an example
of a BITE case segmented by our methodology.
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Table 2 Registration results for
volumes acquired before and
during resection (RESECT
dataset)

Patient ID # Of landmarks Mean initial distance (mm) Without masking With masking

1 34 2.32 (1.49–3.29) 2.32 (1.49–3.29) 0.64 (0.20–1.72)

2 16 3.10 (1.79–5.19) 1.57 (0.56–4.07) 1.50 (0.32–4.20)

3 17 1.93 (0.67–3.02) 0.86 (0.18–2.14) 0.77 (0.29–1.39)

4 19 4.00 (3.03–5.22) 0.82 (0.22–2.38) 0.80 (0.20–2.40)

6 21 5.19 (2.60–7.18) 7.17 (0.54–12.58) 5.17(0.25–10.36)

7 22 4.69 (0.94–8.16) 1.95 (0.47–5.82) 1.98 (0.32–6.17)

12 24 3.39 (1.74–4.81) 2.01 (0.08–8.66) 0.84 (0.16–2.02)

14 22 0.71 (0.42–1.59) 0.49 (0.11–1.19) 0.41 (0.09–1.11)

15 21 2.04 (0.85–2.84) 6.37 (2.03–11.15) 0.60 (0.16–1.29)

16 19 3.19 (1.22–4.53) 11.23(9.20–13.26) 1.26 (0.06–3.40)

17 17 6.32 (4.65–8.07) 1.76 (0.33–4.70) 1.49 (0.25–3.69)

18 23 5.06 (1.55–7.44) 1.25 (0.26–3.98) 1.18 (0.34–3.76)

19 21 2.06 (0.42–3.40) 2.06 (0.20–6.98) 0.96 (0.12–2.76)

21 18 5.10 (3.37–5.94) 4.54 (0.51–9.63) 1.11 (0.18–3.91)

24 21 1.76 (1.16–2.65) 0.96 (0.22–2.72) 0.67 (0.17–1.44)

25 20 3.60 (2.19–5.02) 0.55 (0.15–1.61) 0.55 (0.18–1.61)

27 16 4.93 (3.61–7.01) 1.06 (0.05–2.92) 0.87 (0.15–2.19)

Mean value + SD 20.0±4.8 3.49±1.55 2.57±2.93 1.22±1.20

Other methods Mean value

[18] 1.36

The table shows the registration results (mTRE registration errors inmm, the range (min–max) of the distances
in parenthesis, and the standard deviation) obtained by our solution. The different cases (first column) come
with landmarks, which are specified in the second column. In the third column, we show the initial registration.
We compare the results obtained without (fourth column) and with applying (fifth column) the exclusion of
the resection cavity previously segmented. A second section (other methods) of the table shows the mean
TRE obtained by previously proposed methods

The proposed 3D U-Net requires a mean time of 4.86 s to
generate the mask of interest.

Registration

After having registered the volumes, the deformation field is
applied to the related landmarks. ThemTREobtained exclud-
ing the masks generated by the algorithm trained with the
segmentation of first rater is 1.25 mm and 1.24 mm (before-
during and before-after registration, respectively), whereas
the results by the method discarding the resection cavity
segmented with the 3D U-Net designed with the masks of
the second rater are 1.22 mm and 1.21 mm. In Tables 2
and 3, we report the detailed results of the second method.
Table 2 is related to the volumes before and during resec-
tion, whereas Table 3 refers to those before and after tumor
removal. In both the tables, the fourth column is related to
the results obtained by our solution without the exclusion
the resection cavity, whereas in the last one we report the
registration results achieved discarding it. For the volumes
acquired during and before resection, we achieved a mTRE
of 1.22 mm by excluding the resection cavity and 2.57 mm
without excluding it. Instead, the corresponding results for

the volumes acquired after andbefore removal are of 1.21mm
and 3.53 mm. For a better comparison with previously pro-
posed methods, each table also contains a second section in
which the mTRE achieved by other methods is listed.

To determinewhether the twoproposedmethods (with and
without masking) show statistically significant difference,
we conducted a statistical test. The data are not normally
distributed, and thus, we decided to use the nonparametric
Wilcoxon signed rank test. It tests the null hypothesis that
two related paired samples (the results of the two algorithms)
come from the samedistribution. For both the studies (before-
during and before-after), we verified that the null hypothesis
cannot be accepted (p value<0.001), meaning that there is
statistical difference between the two methods. Besides, we
conducted the same statistical analysis for the two registra-
tion methods using the masks generated by the two different
3D U-Net models. For both the registration tasks, the test
fails to reject the null hypothesis (p value>0.6).

Moreover, we tested our final solution also on the BITE
dataset. The related results are available in Table 4.

The visual results for the registration task are shown in
Figs. 8 and 9, displaying the data in three projections. The
volumes before resection are colored in purple and are over-
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Table 3 Registration results for
volumes acquired before and
after resection (RESECT
dataset)

Patient ID # Of landmarks Mean initial distance (mm) Without masking With masking

1 13 5.80 (3.62–7.22) 4.88 (1.02–7.44) 1.03 (0.18–3.23)

2 10 3.65 (1.71–6.72) 3.28 (1.46–6.16) 3.90 (2.36–5.88)

3 11 2.91 (1.53–4.30) 4.47 (1.68–6.42) 1.15 (0.34–1.93)

4 12 2.22 (1.25–2.94) 2.57 (0.38–4.84) 0.61 (0.13–1.17)

6 11 2.12 (0.75–3.82) 2.38 (0.19–6.01) 1.41 (0.26–4.70)

7 18 3.62 (1.19–5.93) 3.41 (0.52–5.62) 2.03 (0.13–4.88)

12 11 3.97 (2.58–6.35) 7.85 (5.77–11.03) 0.79 (0.32–1.92)

14 17 0.63 (0.17–1.76) 0.50 (0.19–1.04) 0.46 (0.15–0.98)

15 15 1.63 (0.62–2.69) 0.60 (0.21–1.48) 0.58 (0.19–1.25)

16 17 3.13 (0.82–5.41) 6.04 (3.51–8.84) 0.92 (0.28–2.27)

17 11 5.71 (4.25–8.03) 3.33 (0.90–6.17) 1.10 (0.23–4.89)

18 13 5.29 (2.94–9.26) 4.04 (0.69–6.63) 1.13 (0.37–3.13)

19 13 2.05 (0.43–3.24) 2.53 (0.50–8.60) 1.10 (0.41–2.40)

21 9 3.35 (2.34–5.64) 1.99 (0.52–3.47) 1.80 (0.84–3.39)

24 14 2.61 (1.96–3.41) 4.80 (3.17–7.12) 0.87 (0.35–2.42)

25 12 7.61 (6.40–10.25) 6.73 (3.29–9.20) 1.21 (0.15–5.65)

27 12 3.98 (3.09–4.82) 0.60 (0.17–1.79) 0.53 (0.14–0.90)

Mean value + SD 12.9±2.6 3.55±1.76 3.53±2.12 1.21±0.66

Other methods Mean value

[17] 1.49

[18] 2.05

[19] 1.27

[29] 1.92

The table shows the registration results (mTRE registration errors inmm, the range (min–max) of the distances
in parenthesis, and the standard deviation) obtained by our solution. The different cases (first column) come
with landmarks, which are specified in the second column. In the third column, we show the initial registration.
We compare the results obtained without (fourth column) and with applying (fifth column) the exclusion of
the resection cavity previously segmented. A second section (other methods) of the table shows the mean
TRE obtained by previously proposed methods

laid on the volumesduring (Fig. 8) and after (Fig. 9) resection,
shown in gray intensity. Each figure contains two sub-images
displaying the overlay of the two volumes of interest, before
(a) and after (b) having applied our registration algorithm.
The difference between a and b is related to the volume
before resection (in purple), which is deformed according
to the deformation field computed by the registration algo-
rithm.

The registration step requires a mean of 49.67 s to register
the volumes of interest.

Discussion

Regarding the segmentation approach, our solution is able
to achieve a mean DICE index of 0.84 by comparing the
automatically generated masks with the clinically validated
ground truth. The visual results in Figs. 4 and 5 give evi-
dence that the 3DU-Net achieves good results in segmenting
the resection cavities in US volumes. The only exception

is given by volume 18 during resection, for which our
solution obtained the worst DICE index. This is confirmed
also by visual inspection in Fig. 6: The resection cavity is
under-segmented with respect to the manual annotation. The
resection cavities are usually hypoechogenic structures con-
toured by a hyperechogenic border. However, for the case
in Fig. 6, the resection cavity has intensity characteristics
slightly different compared to the majority of the other vol-
umes. Thus, a possible cause for this failure may be related to
the intensity of the internal part of the resection cavity, which
includes also a partial hyperechogenic area. Nevertheless, for
the other volumes of test set, we obtainedDICE values in line
with the rest of the dataset (Table 1). Our algorithm has been
also applied to the BITE volumes. Our automatic method is
able to segment the volumes of interest, but it usually under-
estimates the parts where a hyperintense border is missing. In
this dataset, the US probe is usually inserted inside the resec-
tion cavity, whereas the volumes of the RESECT dataset are
usually acquired from a position outside it. Consequentially,
in the BITE dataset the hyper intense borders surrounding
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Table 4 Registration results for volumes acquired before and after
resection (the BITE dataset)

Patient ID Mean initial distance (mm) With masking

2 2.30 (0.57–5.42) 1.70 (0.65–4.11)

3 3.40 (0.0–5.09) 1.49 (0.25–3.91)

4 4.60 (2.96–5.88) 5.34 (3.09–8.89)

5 4.11 (2.58–5.52) 1.17 (0.41–2.32)

6 2.26 (1.36–3.10) 1.08 (0.38–2.38)

7 3.87 (2.60–5.07) 1.23 (0.54–2.09)

8 2.51 (0.67–3.93) 1.21 (0.45–2.32)

9 2.21 (1.00–4.59) 1.57 (0.26–4.22)

10 3.86 (0.98–6.68) 1.18 (0.44–2.26)

11 2.74 (0.44–8.22) 2.29 (0.20–7.49)

12 10.54 (7.85–13.04) 10.79 (7.68–13.34)

13 1.62 (1.33–2.21) 0.71 (0.25–1.76)

14 2.19 (0.59–3.99) 1.17 (0.34–3.10)

Mean value + SD 3.55±2.28 2.38±2.78

Other methods Mean value

[13] 1.50

[14] 1.50

[15] 1.50

[17] 1.54

[18] 2.48

The table shows the registration results (mTRE registration errors in
mm, the range (min–max) of the distances in parenthesis, and the
standard deviation) obtained by our solution excluding of the resec-
tion cavity previously segmented. A second section (other methods)
of the table shows the mean mTRE obtained by previously proposed
approaches. The methods [13–15] were tested only on BITE dataset,
whereas [17] also on theRESECTdataset, but only on the set of volumes
acquired after resection

the cavity are not visible on the sides of the volume in which
the acquisition probe has been interested (Fig. 7), whereas
in the RESECT dataset the resection cavity is usually visi-
ble as a closed structure. The others algorithms proposed to

segment the resection cavity used a privately defined ground
truth to train their solutions. Therefore, a numerical compar-
ison based on the DICE index is not possible. Regarding the
time required to process a single volume, the solution pro-
posed in [20] requires around 5 min. It may be due to (1)
the deeper architecture of the neural network that they used,
which requires more time to process a single volume and (2)
the sampling method they chose, a sliding window approach
with large patches. On the contrary, our algorithm is faster,
requiring less than 5 s in the inference process.

Regarding the registration results, the proposed solution
registers the volumes of interest by reducing the overall
mTRE for all the sets of volumes taken into account. For the
RESECT dataset, we are able to reduce the initial mTRE for
all the volumes of both sets. Figures 8 and 9 also give impres-
sions that the proposed registration algorithm produces a
better alignment of the volumes, compared to the initial align-
ment. If compared the results obtained by using the masks
generated by the two 3D U-Net models trained on different
ground truth, we can observe that the results differ between
each other: Changes in the segmentation have an impact on
the registration outcome. However, these results also show
that the differences in the masks are negligible on the regis-
tration results (less than 0.1 mm in terms of mTRE), as long
as the segmentation includes the resection cavity. Moreover,
from the numerical results obtained in the RESECT dataset,
the exclusion of the resection cavity from the registration
process (fifth column) provides better results than the case
in which it is not excluded (fourth column). As expected, by
discarding the non-corresponding elements from the regis-
tration process, the algorithm can focus on the elements in
common and therefore obtain better results.

Compared to previous approaches, for both the sets of the
RESECT dataset our algorithm achieves better results than
the solutions compared in Tables 2 and 3. This is true for the
algorithms proposed to register both sets [17, 18], but also for
methods considering only the registration of volumes before-

Fig. 8 Registration of volumes acquired before and during resection. The two figures show the volumes before resection (in purple) overlaid on the
volumes during resection (in gray). a The situation before applying our registration algorithm; b the overlay of the volumes after having deformed
the moving image
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Fig. 9 Registration of volumes acquired before and after resection. The two figures show the volumes before resection (in purple) overlaid on the
volumes after resection (in gray). a The situation before applying our registration algorithm; b the overlay of the volumes after having deformed
the moving image

after resection [19, 29]. Additionally, our final method has
been also tested on BITE dataset (Table 4), in which it is able
to reduce the mTRE of each pairs of volume. In the compar-
ison of our approach with previous solutions, the algorithms
[13–15] were tested only on the BITE dataset: Even if they
obtained slight better results than our solution, they lack gen-
eralization. On the contrary, our method has been tested on
a larger set of volumes, providing a better generalization.
Moreover, the overall mTRE is improved with respect to [18]
(Table 4). However, the solution proposed by [17] achieves a
better mTRE. Our results are mostly affected by the registra-
tion of volume 12, for which the initial error is only slightly
reduced. The starting condition for the registration of this
case is the worst of all the sets of volumes, and our method
may be affected by the initial registration information pro-
vided by the optical tracking system.

Combining the time required by the segmentation of the
resection cavity and the registrations step, the proposed algo-
rithm is able to register two volumes in less than 55 s. This
small delay to the neurosurgical procedure may be tolerable,
especially if a better understanding of the surgical scene after
the registration can be achieved.

Conclusions

We presented here an automatic algorithm for 3D segmen-
tation of resection cavities in US volumes, acquired in the
neurosurgical procedures for tumor removal. For this spe-
cific method, we manually annotated a ground truth that has
been made publicly available. Besides, we proposed a novel
method to register US volumes acquired in neurosurgery
context. In our solution, the resection cavities are excluded
from the registration thanks to the automatic segmentation
method, reducing the impact of non-corresponding elements
in the computation of the distance measure. Our experiments
show that the registration results are only slightly influenced

by the differences in the masks, as long as they include the
resection cavity to be excluded.On the contrary,we show that
by omitting the exclusion of the resection cavities, a worsen-
ing of the results is obtained. To the best of our knowledge,
it is the first time that the resection cavities are taken into
account to improve the registration of US volumes in neu-
rosurgical tumor resection. Moreover, the registration results
obtained in theRESECTdataset are the lowest in comparison
with the other methods in the literature (Tables 2, 3).

As futurework,we plan tomanually annotate the resection
cavity in the volumes of BITE dataset, to propose amore gen-
eralized solution.Moreover, the registrationmethod based on
the exclusion of the resection cavity could be also utilized for
the inter-modality registration of intraoperative US volumes
and preoperative MRI.
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