Skip to main content

Advertisement

Log in

Locally operated assistant manipulators with selectable connection system for robotically assisted laparoscopic solo surgery

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

By integrating locally operated surgical assistant robots in a sterilized area, a surgeon can perform safe robotically assisted laparoscopic solo surgery while controlling a laparoscope-holding robot and a forceps robot. At present, there is no leader–follower control system with switchable connection for the leader device in which each assistant follower robot can provide the manipulation intuitively and easily. In the present study, a new locally operated leader–follower selectable control system has been developed.

Methods

The leader–follower system was developed to connect one leader operating device and one of two selectable follower assistant manipulator devices with different numbers of axes, kinematics models, sensors, and actuators for view stabilization and pulling organs. The system is constructed using the middleware of the ORiN-based medical robot architecture MRLink. The system is regulated by the robot integrator application with unilateral leader–follower PTP using the relative displacement between the leader device and the selected follower device through providers of device interface including the information and control commands.

Results

The execution cycle for updating the position was 50 ms, and the time delay to catch up with the same position was 100 ms. Two assistant manipulators controlled by the leader–follower selectable system could successfully produce the desired view and handle the target organ model for 17 min in a simulated laparoscopic cholecystectomy.

Conclusions

A locally operated leader–follower selectable control system was constructed to facilitate minimally invasive, robotically assisted laparoscopic solo surgery by a doctor working near the patient. This system could be used for such applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Taylor RH, Menciassi A, Fichtinger G, Fiorini P, Dario P (2016) Medical robotics and computer-integrated surgery. In: Siciliano B, Khatib O (eds) Springer handbook of robotics. Springer, Cham, pp 1657–1684. https://doi.org/10.1007/978-3-319-32552-1_63

    Chapter  Google Scholar 

  2. Bihlmaier A (2016) Endoscope robots and automated camera guidance. In: Learning dynamic spatial relations. Springer, Wiesbaden, pp 23–71. https://doi.org/10.1007/978-3-658-14914-7

  3. Gumbs AA, Crovari F, Vidal C, Henri P, Gayet B (2007) Modified robotic lightweight endoscope (ViKY) validation in vivo in a porcine model. Surg Innov 14(4):261–264. https://doi.org/10.1177/1553350607310281

    Article  PubMed  Google Scholar 

  4. Gillen S, Pletzer B, Heiligensetzer A, Wolf P, Kleeff J, Feussner H, Fürst A (2014) Solo-surgical laparoscopic cholecystectomy with a joystick-guided camera device: a case–control study. Surg Endosc 28(1):164–170. https://doi.org/10.1007/s00464-013-3142-x

    Article  PubMed  Google Scholar 

  5. Stolzenburg JU, Franz T, Kallidonis P, Minh D, Dietel A, Hicks J, Nicolaus M, Al-Aown A, Liatsikos E (2010) Comparison of the FreeHand robotic camera holder with human assistants during endoscopic extraperitoneal radical prostatectomy. BJU Int 107(6):970–974. https://doi.org/10.1111/j.1464-410X.2010.09656.x

    Article  PubMed  Google Scholar 

  6. Tadano K, Kawashima K (2014) A pneumatic laparoscope holder controlled by head movement. Int J Med Robot 11(3):331–340. https://doi.org/10.1002/rcs.1606

    Article  PubMed  Google Scholar 

  7. Sekimoto M, Nishikawa A, Taniguchi K, Takiguchi S, Miyazaki F, Doki Y, Mori M (2009) Development of a compact laparoscope manipulator (P-arm). Surg Endosc 23(11):2596–2604. https://doi.org/10.1007/s00464-009-0460-0

    Article  PubMed  Google Scholar 

  8. A-traction Inc. https://www.a-traction.co.jp/. Accessed 1 Sep 2020

  9. Kawai T, Hashida J, Myongsyu S, Nishizawa Y, Nakamura T, Morita N, Murotani T, Mochizuki S (2012) Locally operated detachable end-effector manipulator for endoscopic surgery. JJSCAS 14(1):5–14. https://doi.org/10.5759/jscas.14.5

    Article  Google Scholar 

  10. Kawai T, ShinM NY, Horise Y, Nisihkawa A, Nakamura T (2015) Mobile locally operated detachable end-effector manipulator for endoscopic surgery. Int J CARS 10(2):161–169. https://doi.org/10.1007/s11548-014-1062-4

    Article  Google Scholar 

  11. Kawai T, Hayashi H, Nishizawa Y, Nishikawa A, Nakamura R, Kawahira H, Ito M, Nakamura T (2017) Compact forceps manipulator with a spherical-coordinate linear and circular telescopic rail mechanism for endoscopic surgery. Int J CARS 12(8):1345–1353. https://doi.org/10.1007/s11548-017-1595-4

    Article  Google Scholar 

  12. Kawai T, Matsumoto T, Nishikawa A, Nishizawa Y, Nakamura T (2016) Bending forceps manipulator with offset distance for single-port laparoscopy. ABE 5:56–62. https://doi.org/10.14326/abe.5.56

    Article  Google Scholar 

  13. Sasaki A, Amemori H, Kawai T, Nishikawa A, Nishizawa Y, Nakamura T (2019) Forceps manipulator with circular ring guided rail and linear guide roller for laparoscopic surgery. In: Proceedings of EMBC: FrPOS-36.31

  14. Han S, Kawai T, Nishikawa A, Nishizawa Y, Nakamura T (2020) Portable forceps manipulator with closed loop mechanism using gimbal-mounted parallel linkage for endoscopic surgery. JJSCAS 22(1):5–13. https://doi.org/10.5759/jscas.22.5

    Article  Google Scholar 

  15. Fukui S, Kobayashi H, Kawai T, Nishizawa Y, Nishikawa S, Iwamoto N, Horise Y, Masamune K (2018) Locally operated unilateral master–slave control system with portable device and forceps manipulator for laparoscopic surgery. Int J CARS 13(Suppl 1):S234–S236. https://doi.org/10.1007/s11548-018-1766-y

    Article  Google Scholar 

  16. Guthart GS, Salisbury JJ (2000) The intuitive telesurgery system: overview and application. In: Proceedings of IEEE ICRA, pp 618–621. https://doi.org/10.1109/ROBOT.2000.844121

  17. Stephan D, Sälzer H, Willeke F (2018) First experiences with the New Senhance® Telerobotic system in visceral surgery. Visc Med 34(1):31–36. https://doi.org/10.1159/000486111

    Article  PubMed  PubMed Central  Google Scholar 

  18. Atallah S, Parra-Davila E, Melani AGF (2019) Assessment of the Versius surgical robotic system for dual-field synchronous transanal total mesorectal excision (taTME) in a preclinical model: Will tomorrow’s surgical robots promise newfound options? Tech Coloproctol 23:471–477. https://doi.org/10.1007/s10151-019-01992-1

    Article  CAS  PubMed  Google Scholar 

  19. Tadano K, Kawashima K (2010) Development of a master–slave system with force-sensing abilities using pneumatic actuators for laparoscopic surgery. AR 24(12):1763–1783

    Google Scholar 

  20. MEDICAROID Inc. http://www.medicaroid.com/en/product/hinotori/. Accessed 1 Sep 2020

  21. Hannaford B, Rosen J, Friedman DW, King H, Roan P, Cheng L, Glozman D, Ma J, Kosari SN, White L (2013) Raven-II: an open platform for surgical robotics research. IEEE Trans Biomed Eng 60(4):954–959. https://doi.org/10.1109/TBME.2012.2228858

    Article  PubMed  Google Scholar 

  22. Kazanzides P, Chen Z, Deguet A, Fischer GS, Taylor RH, DiMaio SP (2014) An open-source research kit for the da Vinci Surgical System. In: Proceedings of IEEE ICRA, pp 6434–6439. https://doi.org/10.1109/ICRA.2014.6907809

  23. Chen Z, Deguet A, Taylor RH, Kazanzides P (2017) Software architecture of the da Vinci Research Kit. In: Proceedings of IEEE IRC, pp 180–187. https://doi.org/10.1109/IRC.2017.69

  24. Karino H, Fukui S, Kawai T, Nishizawa Y, Nishikawa A, Iwamoto N, Horise Y, Masamune K (2020) Master–slave selectable control system with multiple connection for locally operated surgical assistant robots in laparoscopy. Int J CARS 15(Suppl 1):S177–S179. https://doi.org/10.1007/s11548-020-02171-6

    Article  Google Scholar 

  25. Iwamoto N, Nishikawa A, Kawai T, Horise Y, Masamune K (2018) A novel medical robot architecture with ORiN for efficient development of telesurgical robots. Int J CARS 13(Suppl 1):S40–S41. https://doi.org/10.1007/s11548-018-1766-y

    Article  Google Scholar 

  26. ORiN http://www.orin.jp/e/. Accessed 1 Sep 2020

  27. Perez M, Xu S, Chauhan S, Tanaka A, Simpson K, Abdul-Muhsin H, Smith R (2016) Impact of delay on telesurgical performance: study on the robotic simulator dV-Trainer. Int J CARS 11:581–587. https://doi.org/10.1007/s11548-015-1306-y

    Article  Google Scholar 

  28. Abbou CC, Hoznek A, Salomon L, Olsson LE, Lobontiu A, Saint F, Cicco A, Antiphon P, Chopin D (2001) Laparoscopic radical prostatectomy with a remote controlled robot. J Urol 165(6 Pt 1):1964–1966. https://doi.org/10.1016/j.juro.2016.10.107

    Article  CAS  PubMed  Google Scholar 

  29. Gupta GS, Mukhopadhyay SC, Messom CH, Demidenko SN (2006) Master–slave control of a teleoperated anthropomorphic robotic arm with gripping force sensing. IEEE Trans Instrum Meas 55(6):2136–2145. https://doi.org/10.1109/TIM.2006.884393

    Article  Google Scholar 

  30. Tewari A, Peabody J, Sarle R, Balakrishnan G, Hemal A, Shrivastava A, Menon A (2002) Technique of da Vinci robot-assisted anatomic radical prostatectomy. Urology 60(4):569–572. https://doi.org/10.1016/S0090-4295(02)01852-6

    Article  PubMed  Google Scholar 

  31. Li T, Tan F, Wang Q, Bu L, Cao JN, Liu X (2013) From offline toward real time: a hybrid systems model checking and CPS codesign approach for medical device plug-and-play collaborations. IEEE Trans Parallel Distrib Syst 25(3):642–652. https://doi.org/10.1109/TPDS.2013.50

    Article  Google Scholar 

  32. Kasparick M, Schmitz M, Andersen B, Rockstroh M, Franke S, Schlichting S, Golatowski F, Timmermann D (2018) OR.NET: a service-oriented architecture for safe and dynamic medical device interoperability. Biomed Tech 63(1):11–30. https://doi.org/10.1515/bmt-2017-0020

    Article  Google Scholar 

  33. Okamoto J, Horise Y, Masamune K, Iseki H, Muragaki Y (2016) Development of a prototype model of “Hyper SCOT (Smart Cyber Operating Theater).” Int J CARS 11(Suppl 1):S163–S164. https://doi.org/10.1007/s11548-016-1412-5

    Article  Google Scholar 

  34. Meara JG, Leather AJM, Hagander L, Alkire BC, Alonso N, Ameh EA, Bickler SW, Conteh L, Dare AJ, Davies J, Mérisier ED, El-Halabi S, Farmer PE, Gawande A, Gillies R, Greenberg SLM, Grimes CE, Gruen RL, Ismail EA, Kamara TB, Lavy C, Lundeg G, Mkandawire NC, Raykar NP, Riesel JN, Rodas E, Rose J, Roy N, Shrime MG, Sullivan R, Verguet S, Watters D, Weiser TG, Wilson IH, Yamey G, Yip W (2015) Global Surgery 2030: evidence and solutions for achieving health, welfare, and economic development. Lancet 386(9993):569–624. https://doi.org/10.1016/S0140-6736(15)60160-X

    Article  PubMed  Google Scholar 

  35. Holmer H, Lantz A, Kunjumen T, Finlayson S, Hoyler M, Siyam A, Montenegro H, Kelley ET, Campbell J, Cherian MN, Hagander L (2015) Global distribution of surgeons, anaesthesiologists, and obstetricians. Lancet Glob Health 3(Suppl 2):S9-11. https://doi.org/10.1016/S2214-109X(14)70349-3

    Article  PubMed  Google Scholar 

  36. Holmer H, Shrime MG, Riesel JN, Meara JG, Hagander L (2015) Towards closing the gap of the global surgeon, anaesthesiologist, and obstetrician workforce: thresholds and projections towards 2030. Lancet 385(Suppl 2):S40. https://doi.org/10.1016/S0140-6736(15)60835-2

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr. Ayumu Sasaki for developing guiding LODEM and Mr. Seungseong Han for developing portable LODEM.

Funding

The present study was supported in part by Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Numbers 18K04065 and 16H01859.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshikazu Kawai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

This article does not describe any studies with human or animal subjects.

Informed consent

This article does not contain patient data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MOV 54824 kb)

Supplementary file2 (MP4 80294 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukui, S., Kawai, T., Nishizawa, Y. et al. Locally operated assistant manipulators with selectable connection system for robotically assisted laparoscopic solo surgery. Int J CARS 16, 683–693 (2021). https://doi.org/10.1007/s11548-021-02338-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-021-02338-9

Keywords

Navigation