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Abstract 

Purpose  

To apply a convolutional neural network (CNN) to develop a system that segments 

intensity calibration phantom regions in computed tomography (CT) images, and to test 

the system in a large cohort to evaluate its robustness.  

Methods 

A total of 1040 cases (520 cases each from two institutions), in which an intensity 

calibration phantom (B-MAS200, Kyoto Kagaku, Kyoto, Japan) was used, were included 

herein. A training dataset was created by manually segmenting the regions of the phantom 

for 40 cases (20 cases each). Segmentation accuracy of the CNN model was assessed with 

the Dice coefficient and the average symmetric surface distance (ASD) through the 4-fold 

cross validation. Further, absolute differences of radiodensity values (in Hounsfield units: 

HU) were compared between manually segmented regions and automatically segmented 

regions. The system was tested on the remaining 1000 cases. For each institution, linear 

regression was applied to calculate coefficients for the correlation between radiodensity 

and the densit ies of the phantom.  

Results 

After training, the median Dice coefficient was 0.977, and the median ASD was 0.116 

mm. When segmented regions were compared between manual segmentation and 

automated segmentation, the median absolute difference was 0.114 HU. For the test cases, 

the median correlation coefficient was 0.9998 for one institution and was 0.9999 for the 
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other, with a minimum value of 0.9863.  

Conclusions 

The CNN model successfully segmented the calibration phantom's regions in the CT 

images with excellent accuracy, and the automated method was found to be at least 

equivalent to the conventional manual method. Future study should integrate the system 

by automatically segmenting the region of interest in bones such that the bone mineral 

density can be fully automatically quantified from CT images.  The source code and the 

model used for segmenting the phantom are open and can be accessed via 

https://github.com/keisuke-uemura/CT-Intensity-Calibration-Phantom-Segmentation. 
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Introduction 

Quantification of bone mineral density (BMD) is necessary in the diagnosis of osteopenia 

and osteoporosis. Usually, lumbar vertebral or proximal femoral BMD is quantified using 

dual-energy X-ray absorptiometry—the procedure recommended by the World Health 

Organization and by several guidelines [1-3]. Yet, BMD assessment in other specific 

regions is also important as it can be used for surgical planning to achieve good clinical 

results; to this end, studies have used quantitative computed tomography (CT) images to 

determine local BMD in the proximal femur [4], femoral head [5,6], and the distal radius 

[7].  

To quantify BMD using CT, an intensity calibration phantom that contains known 

densities of either hydroxyapatite, Ca10(PO4)6(OH)2, or dipotassium hydrogenphosphate, 

K2HPO4, must be included in the field of view to be able to convert radiodensity, in 

Hounsfield units (HU), to bone density, in mg/cm3. This conversion is necessary when 

comparing CT results between patients and between institutions because studies have 

shown that the type of CT device, imaging protocol (e.g., tube voltage and slice thickness), 

and reconstruction protocol (e.g., convolution kernel) affect HU values [8-10]. 

Conventionally, researchers manually select calibration phantom regions of interest on 

CT images, measure radiodensity within each region of interest, and apply a linear 

regression model to convert radiodensity values into tissue density values [4-6,10]; 

however, this process is time consuming and prone to intra- and inter-operator variability, 

which should be avoided in multicenter studies with large datasets.  



6 

 

In this study, we aimed 1) to develop a system that automatically segments the calibration 

phantom's regions of interest (in the CT image) and converts HU into mg/cm3, and 2) to 

evaluate the accuracy and robustness of the system by using CT images acquired at 

different institutions.  

Materials and methods 

A total of 1040 cases, data from patients who underwent hip surgery at two institutions 

(n=520 each, denoted herein as hospitals A and B) were included in this retrospective 

study. Ethics approval was obtained from the institutional review boards of each institutes 

that participated in this study. The primary reasons for hip surgery were, in hospital A, 

osteoarthritis (n=390), osteonecrosis (n=69), and implant loosening (n=26), and, in 

hospital B, proximal femoral fracture (n=511). At both hospitals, preoperative CT images 

are routinely acquired with an intensity calibration phantom (B-MAS200, Kyoto Kagaku, 

Kyoto, Japan) placed under the patient’s body, approximately under the hip (Fig. 1a). This 

phantom is made from urethane foam (0 mg/cm3) and contains four hydroxyapatite rods 

with known densities (50 mg/cm3, 100 mg/cm3, 150 mg/cm3, and 200 mg/cm3). The 

manufacturer and model of the CT device and the imaging protocols used in hospitals A 

and B are shown in Table 1. CT image matrix and voxel sizes were similar between the 

hospitals.  

Segmentation of the calibration phantom 

Because of the physical flexibility of the materials of which the calibration phantom is 

composed, the phantom deforms under the patient’s weight (Fig. 1b). Thus, though the 
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same model of calibration phantom was used throughout the study, segmentation of the 

CT image using a simple rigid 3D phantom model definition was not possible. Instead, 

we employed Bayesian U-Net [11], a convolutional neural network for semantic 

segmentation. For the training dataset, we randomly selected 40 cases (20 cases from each 

hospital), and in each image, the calibration phantom was manually segmented using 

Synapse Vincent software (v4.4, Fujifilm, Tokyo, Japan).  

Automated calibration and post-processing 

Analysis of the convolution neural network's segmentation results was performed on the 

remaining 1000 cases (n=500 from each hospital). After the regions calibration phantom 

were defined (Fig. 2a), the segmented regions were eroded using a 3-pixel disk-shaped 

structuring element to avoid susceptibility to small variations at the boundaries that can 

affect the values of radiodensity measured in each material (Fig. 2b). Linear regression 

(the standard protocol suggested by the manufacturer) was applied to model the 

relationships between HU and mg/cm3 for each test case (Fig. 2c); the slopes and 

correlation coefficients of the regression models were calculated. Matlab (v9.8, The 

MathWorks, Natick, MA, USA) was used for post-processing and the calibration process.  

Quantitative assessment of segmentation accuracy 

To assess segmentation accuracy, 4-fold cross validation was performed on the training 

dataset—15 cases from each hospital (n=30 total) were randomly selected for training and 

the remaining five cases from each hospital (n=10 total) were used for validation in each 

fold. Accuracy was evaluated using the Dice coefficient [12] and average symmetric 
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surface distance (ASD) [13]. Furthermore, to determine the effect of segmentation method 

differences, absolute differences of radiodensity values were compared between manual 

segmentation and automated segmentation regions.  

Calculation of density using the regression models 

To analyze the effect of calibration, the linear regression models were applied to the range 

between −100 and 700 HU (the radiodensity range of human tissues often used as the 

target of clinical analysis), and the results were compared between hospitals.  

Comparison between the conventional manual method and the automated method  

The regression models of the automated method were compared with regression models 

with the conventional manual method. Specifically, circular-shaped regions of interest 

were manually defined for each rod on three axial CT slices, and a linear regression model 

was generated using the mean values for the three slices (Fig. 3). Correlation coefficients 

were compared between the conventional manual method and the automated method.  

Statistical analysis 

Normality was assessed with a Shapiro-Wilk test; data were expressed as mean ± standard 

deviation when normally distributed and as median (interquartile range) when no t 

normally distributed. Data were compared using the Mann-Whitney U-test when not 

normally distributed. The Benjamini-Hochberg procedure was used to correct for multiple 

comparisons. To compare paired non-normally distributed data, the Wilcoxon signed-rank 

test was used. All statistical analyses were performed using Matlab and values of p<0.05 

were considered statistically significant.  
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Results 

Segmentation accuracy 

Automated segmentation was possible in all 1000 test cases including challenging cases 

with severe artifacts as a result of metal implants in the field of view and cases with the 

phantom partially located outside of the field of view (Fig. 4). The source code and the 

model used for segmenting the phantom are open and can be accessed via 

https://github.com/keisuke-uemura/CT-Intensity-Calibration-Phantom-Segmentation. 

After 4-fold cross validation, the median Dice coefficient was 0.977 (0.023), and the 

median ASD was 0.116 mm (0.108) (Fig. 5). No significant difference between hospitals 

was found for the Dice coefficient (p=0.84), but the ASD for hospital A was significantly 

larger than that for hospital B (p=0.02) (Table 2). When segmented regions were 

compared between manual segmentation and automated segmentation, the median 

absolute difference was 0.142 HU (0.280) for hospital A and 0.082 HU (0.124) for hospital 

B, an overall absolute difference of 0.114 HU (0.158) (Table 2). 

Comparison between hospital regression models 

The median correlation coefficient of the regression was 0.9998 (0.0004) for hospital A 

and 0.9999 (0.0001) for hospital B. The median slope of the regression model was 0.841 

(0.027) for hospital A and 0.744 (0.041) for hospital B (Fig. 6), which was significantly 

different (p<0.001). For the range between −100 and 700 HU, there were significant 

differences between the hospitals for the ranges between −100 and 4 HU and between 11 
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and 700 HU—the difference in the result for tissue density was 0.6 mg/cm3 for 0 HU, 

which expanded to 58.2 mg/cm3 for 600 HU (Fig. 4). 

Comparison between the conventional manual method and the automated method  

The median correlation coefficient of the regression models was 0.9999 (0.0002) for the 

conventional manual method and 0.9999 (0.0001) for the automated method. No 

significant difference was found between the methods (p=0.12).  

 

Discussion 

We applied a convolutional neural network to automatically segment the corresponding 

regions of differing radiodensity that corresponded to the different known tissue densities 

of an intensity calibration phantom used in clinical CT images. The model accuracy—

Dice coefficient (0.977) and ASD (0.116 mm)—and robustness—the overall absolute 

difference between manual and automated segmentations (0.114 HU)—were excellent 

after training; however, when tissue densities were calculated, significant differences 

were found between the two hospitals, especially for larger values in the typical clinical 

range.  

In quantitative CT analyses, researchers typically select the calibration phantom manually 

from a few axial slices of the CT images to create a regression model between 

radiodensity and tissue density. When the correlation coefficients of the regression models 

were compared between the conventional manual method and the automated method, no 

significant difference was found. Importantly, the median correlation coefficient s of both 
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methods were higher than 0.999. Thus, the automated method is at least equivalent to the 

conventional manual method for developing calibration regression models. Since the 

automated method does not require a manual process (selecting axial slices, selecting 

regions of interest, and creating regression models), the automated system saves time and 

suits for multicenter studies where many researchers participate. 

There were significant differences between the tissue densities calculated with hospital 

A's regression model and hospital B's regression model when CT image radiodensity 

ranged from −100 to 4 and from 11 to 700. Small differences, even if statistically 

significant, may not be clinically important. However, because of the difference in the 

slope of the regression models (Fig. 4), the differences in tissue density value increased 

as the radiodensity value increased—resulting in a difference of 58.2 mg/cm3 at 600 HU 

(Fig. 4). This finding is in line with Giambini et al's finding [9], an important finding that 

large errors are expected if the static range definition of 300–600 HU is used to define 

cortical bone in CT images, as has been done in previous bone surface modeling and finite 

element studies [14-17]. We suggest that static definitions should not be used between 

institutes and recommend using an intensity calibration phantom when comparing BMD 

values between institutes. 

Recently, studies have employed convolutional neural networks to diagnose hip diseases 

[18,19] and to segment musculoskeletal regions in CT images [11]. To the best of our 

knowledge, no studies have developed an automated system that uses a convolutional 

neural network to segment the regions of imaging calibration phantoms in CT images, 
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which makes our study novel and clinically important. In recent studies, a phantom-less 

calibration method using internal reference tissues of each patient , such as the aortic 

blood tissue, pelvic visceral adipose tissue, muscle, and fat, have been reported [10,20] 

with conflicting results—one paper reported the usefulness of the method [10] while the 

other recommended caution [20]. Importantly, these previous studies included only a 

limited number of cases because manual selection of the reference and of the regions of 

interest was necessary. It would be interesting to apply the system developed in this study 

to clarify the usefulness/accuracy of the phantom-less calibration method.  

It is important to note that manual efforts are still necessary to quantify BMD from CT 

images because the bone regions of interest must be selected manually. Because this 

process is time consuming and prone to error [21], in future studies, we aim to explore 

developing a convolutional neural network to isolate the region of interest (e.g., femoral 

neck and spine) to create a fully automated system, which would pave the way for 

conducting multicenter quantitative CT studies with large datasets.  

Limitations 

There were some limitations in this study. First, while the system was tested at two 

hospitals with different CT devices, imaging protocols, and reconstruction protocols 

including two types of convolution kernels (i.e., soft tissue and bone) that are commonly 

used in the field of orthopedics, results may vary if CT images are acquired in different 

situations. However, it is likely that, if an appropriate training dataset is added, the system 

would be able to perform sufficiently. Second, because only axial slices were used, images 
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with halation (e.g., metal artifacts and beam hardening) were included (Fig. 6); however, 

the effect of halation on the regression models was weakened (because there were 

relatively few of these images) and was likely negligible; this assumption is supported by 

the high minimum correlation coefficient (0.9863).  

Conclusions 

The convolutional neural network was able to accurately segment the intensity calibration 

phantom from the CT images with a mean Dice coefficient of 0.977, ASD of 0.116 mm, 

and an error of 0.114 HU. The median correlation coefficient of the regression models 

was greater than 0.999, which demonstrated the excellent ability of the developed system 

to convert radiodensity into tissue density. Large differences between models were found 

for tissue densities based on inputs in the range defined for cortical bone (300–600 HU), 

indicating the necessity of using a calibration phantom to compare the results between 

institutions. Our next step will be to integrate this system with a system for the automated 

segmentation of region of interest in bones [11] to quantify BMD, for a fully automatic 

system. 
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Table 1 CT equipment, imaging protocol, and image characteristics of hospitals A and B 

 

Hospita
l 

CT 
manufacturer 
(model) 

Tube 
voltage 
(kVp) 

Convolution 
kernel 
(type) 

Matrix 
size 

Voxel size (mm) 

A General Electric  
(Optima CT660)  

120 

Standard  
(soft tissue) 

512 × 
512 

(0.703-0.977) × 
(0.703-0.977) × 
(1.0-2.5) 

B Toshiba 
(Activion16) 

FC30  
(bone) 

(0.622-0.972) × 
(0.622-0.972) × 
(0.5-2.0) 

 
 



21 

 

Table 2 Results of the 4-fold cross validation 
 

Parameter Overall Hospital A Hospital B p value 

Dice coefficient 0.977 
(0.023) 

0.977 
(0.025) 

0.977 
(0.017) 

0.84 

ASD (mm) 0.116 
(0.108) 

0.136 
(0.208) 

0.106 
(0.073) 

0.02 

Absolute 
difference in HU 

0.114 
(0.158) 

0.142 
(0.280) 

0.082 
(0.124) 

0.003 

Data are expressed as median (interquartile range).  

ASD: average symmetric surface distance, HU: Hounsfield units 
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Fig. 1 An intensity calibration phantom, placed under the hip, that was included (a) in the 

field of view of an axial CT image at the level of the center of the femoral head and (b) 

in a lateral view of volume rendering of the CT images (left) and segmented bones (right) 

shows deformation as a result of the patient’s weight 
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Fig. 2 Example CT images from hospital A (left) and hospital B (right) show the intensity 

calibration phantom was (a) segmented into regions (representing 0 mg/cm3, 50 mg/cm3, 

100 mg/cm3, 150 mg/cm3, and 200 mg/cm3 indicated by green, yellow, brown, cyan, and 

vermilion, respectively) using Bayesian U-Net and (b) the regions in the image were filled 

and eroded. Example plots show (c) histograms of each region's radiodensity were 

calculated (left); and a linear regression model was applied, correlation coefficients were 

calculated, and the equation was determined (right) 
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Fig. 3 Manual measurement of calibration phantom radiodensity was performed on three 

axial slices (right) indicated by red horizontal lines labeled 1, 2, and 3 on the sagittal view 

(left) 
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Fig. 4 Two examples of the challenging cases: (a) image artifacts because of bilateral 

metallic hip implants and (b) an image in which the calibration phantom is partially 

located outside of the field of view 
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Fig. 5 Scatter plots of the Dice coefficient and average symmetric surface distance (ASD) 

for all five regions of the calibration phantom. Results of hospital A and hospital B are 

indicated in blue and red, respectively 
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Fig. 6 Relationship between radiodensity (horizontal axis) and tissue density (vertical 

axis) in the models for hospitals A (blue) and B (red) from −100 to 700. Solid lines 

indicate the medians, and dotted lines indicate the interquartile ranges. The table in the 

lower right corner shows tissue densities calculated for 0 HU, 200 HU, 400 HU, and 600 

HU with each hospital's model. Diff.: Difference
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Fig. 7 CT images and segmentation results of the calibration phantom shown on the 

sagittal and axial views in two cases that exhibited low correlation coefficients: a) a 

patient with a bone mass index of 40.6, and the model that had the lowest correlation 

coefficient among the test cases (0.9863), and b) that of the model that had the second 

lowest correlation coefficient (0.9908). In the first case, the border of the calibration 

phantom was difficult to distinguish on the axial slice at the level of the femoral head 

head (right upper row, red horizontal line labeled 1 on the sagittal view) and with halation 

(indicated by yellow triangles) was on the axial slice at the center of the femur (right 

lower row, red horizontal line labeled 2 on the sagittal view), which led to segmentation 
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errors. In the second case, while the calibration phantom is well segmented on the axial 

slice at the head level (right upper row), there is halation at the center of the femur, leading 

to segmentation deficiency 

 


