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Abstract
Purpose Automatic segmentation and classification of surgical activity is crucial for providing advanced support in computer-
assisted interventions and autonomous functionalities in robot-assisted surgeries. Prior works have focused on recognizing
either coarse activities, such as phases, or fine-grained activities, such as gestures. This work aims at jointly recognizing two
complementary levels of granularity directly from videos, namely phases and steps.
Methods We introduce two correlated surgical activities, phases and steps, for the laparoscopic gastric bypass procedure.
We propose a multi-task multi-stage temporal convolutional network (MTMS-TCN) along with a multi-task convolutional
neural network (CNN) training setup to jointly predict the phases and steps and benefit from their complementarity to better
evaluate the execution of the procedure. We evaluate the proposed method on a large video dataset consisting of 40 surgical
procedures (Bypass40).
Results We present experimental results from several baseline models for both phase and step recognition on the Bypass40.
The proposed MTMS-TCNmethod outperforms single-task methods in both phase and step recognition by 1-2% in accuracy,
precision and recall. Furthermore, for step recognition, MTMS-TCN achieves a superior performance of 3-6% compared to
LSTM-based models on all metrics.
Conclusion In this work, we present amulti-taskmulti-stage temporal convolutional network for surgical activity recognition,
which shows improved results compared to single-task models on a gastric bypass dataset with multi-level annotations. The
proposed method shows that the joint modeling of phases and steps is beneficial to improve the overall recognition of each
type of activity.
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Introduction

Recent works in computer-assisted interventions and robot-
assisted minimally invasive surgery have seen significant
progress in developing advanced support technologies for
the demanding scenarios of a modern operating room (OR)
[6,21,27]. Automatic surgical workflow analysis, i.e., reli-
able recognition of the current surgical activities, plays an
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important role in the OR by providing the semantic infor-
mation needed to design assistance systems that can support
clinical decision, report generation, and data annotation. This
information is at the core of the cognitive understanding of
the surgery and could help reduce surgical errors, increase
patient safety, and establish efficient and effective commu-
nication protocols [5,19,21,27].

A surgical procedure can be decomposed into activities
at different levels of granularity, such as the whole proce-
dure, phases, stages, steps, and actions [18]. Recent works
have strongly focused on developing methods to recog-
nize one specific level of granularity from video data. The
visual detection of phases [7,15,16,25,30], robotic gestures
[2,10,26,29], and instruments [11,14,16,22] has, for instance,
seen a surge in research activities, due to their potential
impact on developing intra- and postoperative tools for the
purposes ofmonitoring safety, assessing skills, and reporting.
Many of these previous works have focused on endoscopic
cholecystectomy procedures, utilizing the publicly available
large-scale Cholec80 dataset [25], and on cataract surgi-
cal procedures, utilizing the popular CATARACTS dataset
[11,30].

In this work, we target another type of high volume
procedure, namely the gastric bypass. This procedure is
particularly interesting for activity analysis as it exhibits a
very complex workflow. Gastric bypass is a procedure to
treat obesity, which is considered a global health epidemic
by the World Health Organization [1], with approximately
500,000 laparoscopic bariatric procedures performed every
year worldwide [3]. Laparoscopic Roux-En-Y gastric bypass
(LRYGB), the most performed and gold standard bariatric
surgical procedure [3], consists in the reduction of the stom-
ach and the bypass of part of the small bowel. Various clinical
groups have worked to find a consensus on the best work-
flow for this technically demanding surgical procedure in
order to improve standardization and reproducibility [17]. A
clear framework and shared nomenclature to segment surgi-
cal procedures are currently missing.

Similar to [17], we introduce a hierarchical representation
of LRYGB procedure containing phases and steps represent-
ing the workflow performed in our hospital and focus our
attention on the recognition of these two types of activities.
Toward this end, we utilize a new large-scale dataset, called
Bypass40, containing 40 endoscopic videos of gastric bypass
surgical procedures annotated with phases and steps. Over-
all, 11 phases and 44 steps are annotated in all videos. This
opens new possibilities for research in surgical knowledge
modeling and recognition. To jointly learn the tasks of phase
and step recognition, we introduce MTMS-TCN, a multi-
task multi-stage temporal convolutional networks, extending
MS-TCNs [9] proposed for action segmentation.

The contributions of this paper are threefold: (1) we intro-
duce new multi-level surgical activity annotations for the

LRYGB procedure and utilize a novel dataset; (2) we pro-
pose a multi-task recognition model utilizing only visual
features from the endoscopic video; and (3) we benchmark
the proposed method with other state-of-the-art deep learn-
ing models on the new Bypass40 dataset for surgical activity
recognition, demonstrating the effectiveness of the jointmod-
eling of phases and steps.

Related work

EndoNet [25] and DeepPhase [30] belong to the early works
that employed deep learning for surgical workflow analysis
on cholecystectomy and cataract surgeries. EndoNet jointly
performed phase and tool detection, and the model consisted
of a CNN followed by a hierarchical hidden Markov model
(HMM) for modeling temporal information, while Deep-
Phase used a CNN followed by recurrent neural network
(RNN) temporal modeling. EndoNet was evolved to EndoL-
STM [24] that consisted of a CNN for feature extraction
and an LSTM, i.e., long short-term memory, for temporal
refinement. Similarly, SV-RCNet [15] trained an end-to-
end ResNet [12] and LSTM model incorporating a prior
knowledge inference scheme for surgical phase recognition.
MTRCNet-CL [16] proposed a multi-task model to detect
tool presence and phase recognition. The features from the
CNN were used to detect tool presence and also served as
input to a LSTM model for phase prediction. Additionally,
a correlation loss was introduced to enhance the synergy
between the two tasks. Most of the previous methods use
LSTMs, which retains memory for a limited sequence. Since
the average duration of a surgery can range from less than
half an hour to many hours, it makes it challenging for
LSTM-based models to leverage the temporal information
for surgical phase recognition.

Temporal convolutional networks (TCNs) [20]were intro-
duced to hierarchically process videos for action segmenta-
tion. An encoder–decoder architecture was able to encode
both high- and low-level features in contrast to RNNs. Fur-
thermore, dilated convolutions [23]were utilized in TCNs for
action segmentation that showed performance improvements
due to a large receptive field for higher temporal resolution.
MS-TCN [9] consisted of a multi-stage predictor architec-
ture with each stage consisting of multi-layer TCN, which
incrementally refined the prediction of the previous stage.
Recently, TeCNO [7] adapted the MS-TCN architecture for
online surgical phase prediction by implementing causal con-
volutions [23]. We build upon this architecture and confirm
experimentally that it is superior to LSTM for multi-level
activity recognition.
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Fig. 1 Sample images from the
dataset with phase labels on
top-left and step labels on
top-right corner. The labels can
be inferred from Fig. 2

Fig. 2 List of all the phases and steps defined in the dataset with their hierarchical relationship. The surgically critical activities are highlighted in
red

Hierarchical surgical activities: phases &
steps

We introduce two hierarchically defined surgical activities
called phases and steps for the LRYGB procedure. These
two elements define the workflow of the surgery at two levels
of granularity with the phases describing the surgical work-
flow at coarser level than the steps. Phases describe a set of
fundamental surgical aims to accomplish in order to success-
fully complete the surgical procedure, while steps describe
a set of surgical actions to perform in order to accomplish
a surgical phase. The surgical procedure is segmented into

44 fine-grained steps, along with 11 coarser phases. All the
phases and steps are presented in Fig. 2. These two types of
activities are interesting for their inherent hierarchical rela-
tionship,which is shown in the figure.Additionally, the figure
highlights all the critical phases, and corresponding critical
steps, that are clinically known to be important for surgical
outcomes [4].

We make use of a new dataset, called Bypass40, consist-
ing of 40 videos of LRYGB procedures with an average
duration of 110±30 minutes. This dataset is created from
surgeries performed by 7 expert surgeons at IHU Strasbourg.
The videos are captured at 25 frames-per-second (fps) with a
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Fig. 3 Average duration of
phases and steps across videos
in the dataset

resolution of 854 × 480 or 1920 × 1080 and annotated with
phases and steps. Sample imageswith respective phase labels
are shown in Fig. 1. The distribution of phases and steps in
the Bypass40 dataset is shown in Fig. 3. As can be seen, there
is a high imbalance in class distribution of both phases and
steps. This is to be expected as all steps need not occur in all
surgeries and also task completion time of the phases/steps
may not be similar.
Methodology With the aim of joint online recognition of
phases and steps, we propose an online surgical activity
recognition pipeline consisting of the following steps: 1) A
multi-task ResNet-50 is employed as a visual feature extrac-
tor. 2) Amulti-taskmulti-stage causal TCNmodel refines the
extracted feature of the current frame by encoding temporal
information deduced by analyzing the history. We propose
this two-step approach so that the temporal model training is
independent of the backboneCNN feature extractionmodels.
The overview of the model setup is depicted in Fig. 4.
Feature Extraction Architecture ResNet-50 [13] has been
successfully employed in many works for phase segmen-
tation [7,15,16,28]. In this work, we utilize the same archi-
tecture as our backbone visual feature extraction model. The
model maps 224×224×3 RGB images to a feature space of
size N f = 2048. The model is trained on frames extracted
from the videos, without any temporal context, in a multi-
task setup to predict both phase and step as shown in Fig. 1
(a). Since both activities are multi-class classification prob-
lems that exhibit imbalance in the class distribution, softmax
activations and class-weighted cross-entropy loss are uti-
lized. The class weights for both activities are calculated
using the median frequency balancing [8]. The total loss,
Ltotal = Lphase + Lstep, is obtained by combining equally

weighted contributions of class-weighted cross-entropy loss
for phases (Lphase) and steps (Lstep).
Temporal Modeling

For joint temporal surgical activity recognition task, we
proposeMTMS-TCN, amulti-task extension of amulti-stage
temporal convolutional network. The model takes an input
video consisting of x1:t , t ∈ [1, T ] frames, where T is the
total number of frames, and predicts y1:t where yt is the class
label for the current timestamp t . Following the design of
MS-TCN, MTMS-TCN contains neither pooling layers nor
fully connected layers and it is only constructed with tempo-
ral convolutional layers. Our temporal model consists of only
temporal convolutional layers; in particular, they are dilated
residual layers performing dilated convolutions. Since our
aim is to segment surgical activities online, similar to TeCNO
[7], we perform causal convolutions [23] at each layer which
depends only on n past frames and does not rely on any
future frames. The dilation factor is increased by a factor of
2 for each consecutive layer which increases exponentially
the temporal receptive field of the network without introduc-
ing any pooling layer. Additionally, the multi-stage model
recursively refines the output of the previous stage.

Similar to our setup for CNN, we train our MTMS-TCN
in a multi-task fashion to jointly predict the two activities by
attaching two heads at the end of a stage. Softmax activations
with cross-entropy loss for phase and step are applied, and
the total loss is similar to the loss utilized for training the
backbone CNN (Eq. 3). Please note that the cross-entropy
loss is not class-weighted. This is done to allow the temporal
model to learn implicitly the duration and occurrence of each
class in both phases and steps.
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Fig. 4 Overview of our model
setup. Multi-task architecture of
the ResNet-50 feature extractor
backbone on the left and the
multi-task setup of the TCN
temporal model on the right

Experimental setup

Dataset We evaluate our method on the Bypass40 dataset
described in Section 3. We split the 40 videos in the dataset
into 4 subsets of 10 videos each to perform 4-fold cross-
validation. Each subset was used as test set, while the other
subsets were combined together and divided into training
and validation tests consisting of 24 and 6 videos, respec-
tively. The dataset was subsampled at 1 fps amounting to
approximately 149,000 frames for training, 41,000 frames
for validation, and 66,000 frames for testing in each fold.
The frames are resized to ResNet-50’s input dimension of
224 × 224 × 3, and the training dataset is augmented by
applying horizontal flip, saturation, and rotation.
Model Training The ResNet-50 model is initialized with
weights pre-trained on ImageNet. The model is then trained
for the task of phase and step recognition in a single-task
setup, called ResNet, and jointly in a multi-task setup, called
MT-ResNet, described in Section 3. In all the experiments,
the model is trained for 30 epochs with a learning rate of 1e-
5, weight regularization of 5e-5, and a batch size of 32. The
test results presented are from the best performing model on
the validation set. The baseline TCN model is trained in a
single-task setup utilizing the features extracted from back-
bone ResNet (Fig. 5). This is effectively achieved by training
TeCNO separately for the two activity recognition tasks. The
MTMS-TCN model is trained in a multi-task setup utilizing
the backbone MT-ResNet trained in a similar fashion. All
models are trained with a different number of TCN stages to
identify the effect of the number of stages on long tempo-
ral associations. In all the experiments, the model is trained
for 200 epochs with a learning rate of 3e-4. The features
representations of augmented data for CNN are also utilized
for training the TCN model (Fig. 5). Our CNN backbone
was implemented in TensorFlow, while the temporal models
(TCN and LSTM)were implemented in Pytorch. Ourmodels
were trained on NVIDIA GeForce RTX 2080 Ti GPUs.
Evaluation Metrics We follow the same evaluation metrics
used in other related publications [7,15,16], where accuracy
(ACC), precision (PR), recall (RE), and F1 score (F1) are
used to effectively compare the results. Accuracy quantifies
the total correct classification of activity in the whole video.

PR, RE, and F1 are computed class-wise, defined as:

PR = |GT ∩ P|
|P| , RE = |GT ∩ P|

|GT | , F1 = 2
1
PR + 1

RE

,

(1)

where GT and P represent the ground truth and prediction
for one class, respectively. These values are averaged across
all the classes to obtain PR, RE, and F1 for the entire test set.
We perform 4-fold cross-validation and report the results as
mean and standard deviation across all the folds.

The overview of all evaluated models is depicted in Fig.
5. MTMS-TCN is evaluated against popular surgical phase
recognition networks, ResNetLSTM [15], and TeCNO [7].
Both these networks are trained in a two-step process for
the single-task of phase and step separately. Furthermore,
ResNetLSTMis extended to getMT-ResNetLSTMwhere the
ResNetLSTM model is trained in a multi-task setup. Since
causal convolutions are used in the model for online recog-
nition of activities, for fair comparison unidirectional LSTM
is utilized. The LSTM, with 64 hidden units, is trained using
the video features extracted from the CNN backbone with
a sequence length equal to the length of the videos for 200
epochs with a learning rate of 3e-4.

Results and discussions

Comparison of MTMS-TCN (Stage I) with other state-
of-the-art methods, utilizing both LSTMs and TCNs, is
presented in Table 1 and Table 2 on both phase and step
recognition tasks. TeCNO which utilizes TCNs outperforms
bothResNetLSTMandMT-ResNetLSTMmodels by 1%and
3% in terms of accuracy. MTMS-TCN outperforms TeCNO,
ResNetLSTM, and MT-ResNetLSTM models for by 2% the
phase recognition.

Similarly, for step recognition, TeCNO outperforms both
LSTM-based models by 3-4% with respect to accuracy and
3-6% in terms of precision. MTMS-TCN improves over
TeCNO by 1% in accuracy and outperforms it by 2% and
1.5% in terms of precision and recall, respectively. In turn,
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Fig. 5 Overview of all the
models used for evaluation. All
the models trained in a
single-task setup are shown on
the left, while all the models
trained in multi-task setup are
shown on the right

Table 1 Baseline comparison
on the dataset for phase
recognition. Accuracy (ACC),
precision (PR), recall (RE), and
F1-score (F1) (%) are reported
across all the 4-fold
cross-validation

Phase
ACC PR RE F1

No TCN ResNet 82.1 ± 3.3 73.9 ± 3.3 72.2 ± 3.4 72.5 ± 3.6

MT-ResNet 81.7 ± 2.7 73.1 ± 2.8 72.1 ± 2.3 72.1 ± 2.6

ResNetLSTM 89.1 ± 2.8 82.1 ± 3.6 82.3 ± 3.5 81.7 ± 3.5

MT-ResNetLSTM 88.6 ± 2.7 81.4 ± 3.9 81.1 ± 3.5 80.7 ± 3.8

Stage I TeCNO 89.8 ±3.5 85.4 ± 4.0 82.3 ± 4.5 83.0 ± 4.1

MTMS-TCN 91.2 ± 2.9 86.1 ± 3.7 83.8 ± 4.0 84.4 ± 3.5

Stage II TeCNO 89.9 ± 3.3 84.4 ± 4.3 83.3 ± 3.9 83.5 ± 4.0

MTMS-TCN 90.9 ± 3.2 85.6 ± 4.5 84.0 ± 4.2 84.2 ± 4.2

Bold numbers denote best performance for each metric

Table 2 Baseline comparison
on the dataset for step
recognition. Accuracy (ACC),
precision (PR), recall (RE), and
F1-score (F1) (%) are reported
across all the 4-fold
cross-validation

Step
ACC PR RE F1

No TCN ResNet 65.5 ± 2.0 45.3 ± 3.0 43.2 ± 2.7 42.6 ± 2.3

MT-ResNet 66.6 ± 2.4 46.0 ± 3.1 44.7 ± 3.1 43.8 ± 2.9

ResNetLSTM 71.3 ± 2.3 47.8 ± 4.1 47.7 ± 2.8 45.8 ± 2.7

MT-ResNetLSTM 72.2 ± 2.0 51.0 ± 3.3 49.3 ± 1.8 47.9 ± 2.1

Stage I TeCNO 75.1 ± 2.4 54.7 ± 2.6 50.9 ± 2.4 49.9 ± 1.8

MTMS-TCN 76.1 ± 2.7 56.4 ± 3.6 52.5 ± 3.3 51.9 ± 2.9

Stage II TeCNO 74.8 ± 2.5 53.2 ± 2.5 50.8 ± 3.3 49.9 ± 3.7

MTMS-TCN 75.5 ± 3.1 54.9 ± 4.4 52.6 ± 4.2 51.8 ± 4.1

Bold numbers denote best performance for each metric
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Table 3 Baseline comparison
on the dataset for joint phase
and step recognition. Accuracy
(ACC) is reported after 4-fold
cross-validation

Phase ACC Step ACC Phase-Step ACC

No TCN ResNet 82.1 ± 2.9 65.5 ± 1.8 54.9 ± 2.6

MT-ResNet 81.7 ± 2.3 66.6 ± 2.1 64.8 ± 2.0

ResNetLSTM 89.1 ± 2.4 71.3 ± 2.0 68.5 ± 2.3

MT-ResNetLSTM 88.6 ± 2.3 72.2 ± 1.8 70.7 ± 1.9

Stage I TeCNO 89.8 ± 3.0 75.1 ± 2.1 72.3 ± 3.0

MTMS-TCN 91.2 ± 2.5 76.1 ± 2.3 75.1 ± 2.8

Stage II TeCNO 89.9 ± 2.8 74.8 ± 2.2 71.9 ± 2.7

MTMS-TCN 90.9 ± 2.8 75.5 ± 2.7 75.1 ± 2.8

Bold numbers denote best performance for each metric

Table 4 TeCNO vs
MTMS-TCN: 4-fold
cross-validation average
precision, recall, and F1-score
(%) reported for the critical
steps

TeCNO MTMS-TCN
ID PR RE F1 PR RE F1

S4 84.2±5.7 90.0±3.8 85.6±4.1 86.4±10.8 88.3±3.9 86.1±6.6

S5 87.7±1.7 80.4±9.4 80.8±7.6 87.5±4.3 77.4±6.7 79.2±6.8

S6 77.4±7.8 64.7±22.3 63.0±16.3 76.4±15.8 66.9±22.5 62.5±13.6

S7 77.2±10.1 64.7±11.8 67.8±9.3 72.1±8.0 64.0±10.7 66.4±9.8

S8 78.0±8.3 77.1±10.5 72.8±4.0 75.6±7.0 77.1±9.8 72.7±3.4

S16 76.4±7.1 69.1±6.5 68.7±4.2 79.1±3.2 67.7±4.0 68.6±4.4

S18 92.4±2.3 83.1±5.3 86.6±2.3 89.8±4.9 80.5±3.1 83.4±3.6

S25 55.1±12.4 39.4±18.6 40.6±16.1 47.6±6.6 49.5±18.3 45.2±10.7

S30 62.3±4.8 62.0±13.5 57.5±10.3 65.3±6.7 71.2±5.2 64.8±5.6

S32 87.9±3.8 85.4±4.4 84.0±6.6 85.1±5.4 86.3±3.3 83.7±2.9

S39 46.2±27.1 47.8±25.4 39.0±22.2 49.6±33.9 42.9±27.2 40.6±25.5

Bold numbers denote best performance per step per metric

MTMS-TCN outperforms LSTM-based models by 4-5% in
terms of accuracy and 3-8% in terms of precision and recall.

Table 3 presents performance of all the models on joint
recognition of phase and step. We present joint phase-
step prediction accuracy which is computed as the average
number of instances where both the phase and step are
correctly recognized by the model. All the multi-task mod-
els outperform their single-task counterpart. In particular,
MTMS-TCN outperforms TeCNO by 3%. Moreover, the
joint-recognition accuracy ofMTMS-TCN is very close to its
step recognition accuracy which indicated that the model has
implicitly learned the hierarchical relationship and benefited
from it.

The improvement achieved by both MTMS-TCN and
TeCNO in both the recognition tasks over LSTM-based
models is attributed to the higher temporal resolution and
large receptive field of the underlying TCN module. On the
other hand, improvement of MTMS-TCN over TeCNO is
attributed to the multi-task setup. Additionally, MT-ResNet,
the backbone of ourMTMS-TCN, achieves improved perfor-
mance in stepswith a small decrease in performance for phase
recognition compared to ResNet, the backbone of TeCNO.

A set of surgically critical steps along with their aver-
age precision, recall, and F1-score is presented in Table 4.
MTMS-TCN performs better than TeCNO in recognizing
many of the steps. Moreover, short duration steps such as
S25, S30, and S39 that are harder to recognize are signifi-
cantly better recognized by our MTMS-TCN over TeCNO.
All these results validate our model trained in a multi-task
setup for joint recognition of phases and steps.

Fig. 6 visualizes a video set of 3 best and 3 worst
performances of MTMS-TCN for phase recognition. The
MTMS-TCN, in some cases, performs better than TeCNO
in recognizing smaller phases, such as P5, P7, P9, and
P10. MTMS-TCN is also able to recognize phase transi-
tions better than TeCNO in some instances (e.g., P3, P4, and
P9). Additionally, both the methods outperform ResNet and
ResNetLSTM models.

Fig. 7 visualizes the complete video set of one best and
one worst performance of MTMS-TCN for step recognition.
Since there are 44 steps, visualizing all of them is quite chal-
lenging and clutters the plot. To effectively show the results,
we look at one videos instead of 3 in each best and worst
category. Furthermore, for better visualization we use a 20
categorical colormap and all 44 steps are mapped onto this
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Fig. 6 Phase recognition on complete videos in Bypass40 for quality
assessment. The top row shows 3 videos on which our model performs
best, and the bottom row shows 3 videos with worst performance

Fig. 7 Step recognition on complete videos in Bypass40 for quality
assessment. Thefigure showsbest (top) andworst (bottom)performance
of ourmodel. The 44distinct steps aremapped to the same20 categorical
colormap

colormap. The results clearly show that MTMS-TCN is able
to better capture smaller steps and step transitions in com-
parison to TeCNO and ResNetLSTM.

Conclusion

In this paper, we introduce a new multi-level surgical activ-
ity annotations for the LRYGB procedures, namely phases
and steps. We proposed MTMS-TCN, a multi-task multi-
stage temporal convolutional network that was successfully
deployed for joint online phase and step recognition. The
model is evaluated on a new dataset and compared to state-
of-the-art methods in both single-task and multi-task setups
and demonstrates the benefits of modeling jointly the phases
and steps for surgical workflow recognition.
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