Skip to main content

Advertisement

Log in

3D ultrasound navigation system for screw insertion in posterior spine surgery: a phantom study

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Posterior spinal fusion surgery is required to correct severe idiopathic scoliosis. The surgery involves insertion of screws which requires high accuracy to prevent neurologic damage to the spinal cord. Although conventional CT navigation can reduce this risk, 3D-ultrasound-based navigation could achieve this without added ionizing radiation and usage of expensive and bulky equipment. This study aimed to evaluate the accuracy of a 3D ultrasound navigation system for posterior spine surgery.

Methods

A custom 3D ultrasound (3DUS) with model-to-surface registration algorithm was developed and integrated into a 3D navigation environment. A CT scan of an adolescent spine (T3-T11) was segmented and 3D printed for experiments. A probe with reflective markers was placed in vertebral pedicles 684 times in varying levels, positions in the capture space and orientation of vertebra, and the entrypoint and trajectory accuracies were measured.

Results

Among 684 probe placements in vertebral levels T3 to T11 in the phantom spine, 95.5% were within 1 mm and 5° of accuracy, with an average accuracy of 0.4 ± 0.4 mm and 2.1 ± 0.9°, requiring 8.8 s to process. Accuracies were statistically significantly affected by vertebral orientation and position in the capture volume, though this was still within the targeted accuracies of 1 mm and 5°.

Conclusion

This preliminary ultrasound-based navigation system is accurate and fast enough for guiding placement of pedicle screws into the spine in posterior fusion surgery. The current results are limited to phantom spines, and future study in animal or human cadavers is needed to investigate soft tissue effects on registration accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

Not applicable.

Code availability

Custom code.

Abbreviations

3DUS:

3D ultrasound

AIS:

Adolescent idiopathic scoliosis

CT:

Computed tomography

ICP:

Iterative closest point

ANOVA:

Analysis of variance

NW:

Northwest

NE:

Northeast

SW:

Southwest

SE:

Southeast

References

  1. Konieczny MR, Senyurt H, Krauspe R (2013) Epidemiology of adolescent idiopathic scoliosis. J Child Orthop 7:3–9

    Article  Google Scholar 

  2. Richards BS, Bernstein RM, D’Amato CR, Thompson GH (2005) Standardization of criteria for adolescent idiopathic scoliosis brace studies: SRS Committee on Bracing and Nonoperative Management. Spine 30:2068–2075

    Article  Google Scholar 

  3. Maruyama T, Takeshita K (2008) Surgical treatment of scoliosis: a review of techniques currently applied. Scoliosis 3:6. https://doi.org/10.1186/1748-7161-3-6

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cuartas E, Rasouli A, O’Brien M, Shufflebarger HL (2009) Use of all-pedicle-screw constructs in the treatment of adolescent idiopathic scoliosis. J Am Acad Orthop Surg 17:550–561

    Article  Google Scholar 

  5. Coe JD, Arlet V, Donaldson W, Berven S, Hanson DS, Mudiyam R, Perra JH, Shaffrey CI (2006) Complications in spinal fusion for adolescent idiopathic scoliosis in the new millennium. A report of the Scoliosis Research Society Morbidity and Mortality Committee. Spine 31:345–349. https://doi.org/10.1097/01.brs.0000197188.76369.13

    Article  PubMed  Google Scholar 

  6. Reames DL, Smith JS, Fu KMG, Polly DW, Ames CP, Berven SH, Perra JH, Glassman SD, McCarthy RE, Knapp RD, Heary R, Shaffrey CI, Scoliosis Research Society Morbidity and Mortality Committee (2011) Complications in the surgical treatment of 19,360 cases of pediatric scoliosis: a review of the Scoliosis Research Society Morbidity and Mortality database. Spine 36:1484–1491. https://doi.org/10.1097/BRS.0b013e3181f3a326

    Article  PubMed  Google Scholar 

  7. Chan A, Parent E, Wong J, Narvacan K, San C, Lou E (2019) Does image guidance decrease pedicle screw-related complications in surgical treatment of adolescent idiopathic scoliosis: a systematic review update and meta-analysis. Eur Spine J 29(4):694–716. https://doi.org/10.1007/s00586-019-06219-3

    Article  PubMed  Google Scholar 

  8. Rampersaud YR, Simon DA, Foley KT (2001) Accuracy requirements for image-guided spinal pedicle screw placement. Spine 26:352–359. https://doi.org/10.1097/00007632-200102150-0001

    Article  PubMed  CAS  Google Scholar 

  9. Puvanesarajah V, Liauw JA, Lo S, Lina IA, Witham TF (2014) Techniques and accuracy of thoracolumbar pedicle screw placement. World J Orthop 5:112–123. https://doi.org/10.5312/wjo.v5.i2.112

    Article  PubMed  PubMed Central  Google Scholar 

  10. Takahashi J, Hirabayashi H, Hashidate H, Ogihara N, Kato H (2010) Accuracy of multilevel registration in image-guided pedicle screw insertion for adolescent idiopathic scoliosis. Spine 35:347–352. https://doi.org/10.1097/BRS.0b013e3181b77f0a

    Article  PubMed  Google Scholar 

  11. Mujagić M, Ginsberg HJ, Cobbold RSC (2008) Development of a method for ultrasound-guided placement of pedicle screws. IEEE Trans Ultrason Ferroelectr Freq Control 55:1267–1276. https://doi.org/10.1109/TUFFC.2008.789

    Article  PubMed  Google Scholar 

  12. Yan CXB, Goulet B, Tampieri D, Collins DL (2012) Ultrasound-CT registration of vertebrae without reconstruction. Int J Comput Assist Radiol Surg 7:901–909. https://doi.org/10.1007/s11548-012-0771-9

    Article  PubMed  Google Scholar 

  13. Chan A, Parent E, Lou E (2018) Reconstruction and positional accuracy of 3D ultrasound on vertebral phantoms for adolescent idiopathic scoliosis spinal surgery. Int J Comput Assist Radiol Surg 14(3):427–439. https://doi.org/10.1007/s11548-018-1894-4

    Article  PubMed  Google Scholar 

  14. Lou EH, Hill DL, Donauer A, Tilburn M, Hedden D, Moreau M (2017) Results of ultrasound-assisted brace casting for adolescent idiopathic scoliosis. Scoliosis Spinal Disord 12:23. https://doi.org/10.1186/s13013-017-0130-2

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zheng Y-P, Lee T, Lai K, Yip B, Zhou G, Jiang W-W, Cheung J, Wong M-S, Ng B, Cheng J, Lam T-P (2016) A reliability and validity study for Scolioscan: a radiation-free scoliosis assessment system using 3D ultrasound imaging. Scoliosis Spinal Disord 11:13. https://doi.org/10.1186/s13013-016-0074-y

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gueziri H-E, Santaguida C, Collins DL (2020) The state-of-the-art in ultrasound-guided spine interventions. Med Image Anal 65:101769. https://doi.org/10.1016/j.media.2020.101769

    Article  PubMed  Google Scholar 

  17. Chen Z, Wu B, Zhai X, Bai Y, Zhu X, Luo B, Chen X, Li C, Yang M, Xu K, Liu C, Wang C, Zhao Y, Wei X, Chen K, Yang W, Ta D, Li M (2015) Basic study for ultrasound-based navigation for pedicle screw insertion using transmission and backscattered methods. PLoS ONE 10:e0122392. https://doi.org/10.1371/journal.pone.0122392

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Rasoulian A, Abolmaesumi P, Mousavi P (2012) Feature-based multibody rigid registration of CT and ultrasound images of lumbar spine. Med Phys 39:3154–3166. https://doi.org/10.1118/1.4711753

    Article  PubMed  Google Scholar 

  19. Nagpal S, Abolmaesumi P, Rasoulian A, Hacihaliloglu I, Ungi T, Osborn J, Lessoway VA, Rudan J, Jaeger M, Rohling RN, Borschneck DP, Mousavi P (2015) A multi-vertebrae CT to US registration of the lumbar spine in clinical data. Int J Comput Assist Radiol Surg 10:1371–1381. https://doi.org/10.1007/s11548-015-1247-5

    Article  PubMed  Google Scholar 

  20. Gueziri H-E, Collins DL (2019) Fast registration of CT with intra-operative ultrasound images for spine surgery. In: Zheng G, Belavy D, Cai Y, Li S (eds) Computational methods and clinical applications for spine imaging. Springer International Publishing, Cham, pp 29–40

    Chapter  Google Scholar 

  21. Chan A, Coutts B, Parent E, Lou E (2021) Development and evaluation of CT-to-3D ultrasound image registration algorithm in vertebral phantoms for spine surgery. Ann Biomed Eng 49(1):310–321. https://doi.org/10.1007/s10439-020-02546-5

    Article  PubMed  Google Scholar 

  22. Chan A, Aguillon J, Hill D, Lou E (2017) Precision and accuracy of consumer-grade motion tracking system for pedicle screw placement in pediatric spinal fusion surgery. Med Eng Phys 46:33–43. https://doi.org/10.1016/j.medengphy.2017.05.003

    Article  PubMed  Google Scholar 

  23. Lind KR, Sizmur T, Benomar S, Miller A, Cademartiri L (2014) LEGO® bricks as building blocks for centimeter-scale biological environments: the case of plants. PLoS ONE 9:e100867. https://doi.org/10.1371/journal.pone.0100867

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Ottacher D, Chan A, Parent E, Lou E (2020) Positional and orientational accuracy of 3D ultrasound navigation system on vertebral phantom study. IEEE Trans Instrum Meas 69(9):6412–6419. https://doi.org/10.1109/TIM.2020.2973839

    Article  Google Scholar 

  25. Huang Q, Zeng Z (2017) A review on real-time 3D ultrasound imaging technology. BioMed Res Int. https://doi.org/10.1155/2017/6027029

    Article  PubMed  PubMed Central  Google Scholar 

  26. Solberg OV, Lindseth F, Torp H, Blake RE, Nagelhus Hernes TA (2007) Freehand 3D ultrasound reconstruction algorithms—a review. Ultrasound Med Biol 33:991–1009. https://doi.org/10.1016/j.ultrasmedbio.2007.02.015

    Article  PubMed  Google Scholar 

  27. Anderson CH, Bergen JR, Burt PJ, Ogden JM (1984) Pyramid methods in image processing. RCA Engineer 29(6):33–41

    Google Scholar 

  28. Baerentzen JA, Gravesen J, Anton F, Aanæs H (2012) Guide to computational geometry processing: foundations, algorithms, and methods. Springer, London

    Book  Google Scholar 

  29. Dummiesman (2019) Runtime OBJ importer. In: Unity asset store runtime OBJ importer. https://assetstore.unity.com/packages/tools/modeling/runtime-obj-importer-49547. Accessed 10 May 2019

  30. Suleyman YK (2019) Runtime file browser. In: Unity asset store runtime OBJ importder. https://assetstore.unity.com/packages/tools/gui/runtime-file-browser-113006. Accessed 10 May 2019

  31. Dougherty ER, Lotufo RA (2003) Hands-on morphological image processing. SPIE

    Book  Google Scholar 

  32. Koo TK, Kwok WE (2016) A non-ionizing technique for three-dimensional measurement of the lumbar spine. J Biomech 49:4073–4079. https://doi.org/10.1016/j.jbiomech.2016.10.048

    Article  PubMed  Google Scholar 

  33. Tamura Y, Sugano N, Sasama T, Sato Y, Tamura S, Yonenobu K, Yoshikawa H, Ochi T (2005) Surface-based registration accuracy of CT-based image-guided spine surgery. Eur Spine J 14:291–297. https://doi.org/10.1007/s00586-004-0797-y

    Article  PubMed  Google Scholar 

  34. Fitzpatrick JM (2009) Fiducial registration error and target registration error are uncorrelated. In: Medical imaging 2009: visualization, image-guided procedures, and modeling. International Society for Optics and Photonics, p 726102

  35. Holly LT, Bloch O, Johnson JP (2006) Evaluation of registration techniques for spinal image guidance. J Neurosurg Spine 4:323–328. https://doi.org/10.3171/spi.2006.4.4.323

    Article  PubMed  Google Scholar 

  36. Runge A, Steinbichler T, Giotakis A, Schartinger V, Hörmann R, Riechelmann H, Freysinger W (2018) Accuracy of surface registration in cranial electromagnetic navigation. Otorhinolaryngol-Head Neck Surg. https://doi.org/10.15761/OHNS.1000169

    Article  Google Scholar 

  37. Grauvogel TD, Engelskirchen P, Semper-Hogg W, Grauvogel J, Laszig R (2017) Navigation accuracy after automatic- and hybrid-surface registration in sinus and skull base surgery. PLoS ONE 12:e0180975. https://doi.org/10.1371/journal.pone.0180975

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Wei B, Sun G, Hu Q, Tang E (2017) The safety and accuracy of surgical navigation technology in the treatment of lesions involving the skull base. J Craniofac Surg 28:1431–1434. https://doi.org/10.1097/SCS.0000000000003624

    Article  PubMed  Google Scholar 

Download references

Funding

The research was funded by the Alberta Spine Foundation, the Natural Sciences and Engineering Research Council of Canada, Alberta Innovates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edmond Lou.

Ethics declarations

Conflict of interest

No disclosures to declare for any authors.

Ethics approval

Ethics approvals were obtained for this project.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan, A., Parent, E., Mahood, J. et al. 3D ultrasound navigation system for screw insertion in posterior spine surgery: a phantom study. Int J CARS 17, 271–281 (2022). https://doi.org/10.1007/s11548-021-02516-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-021-02516-9

Keywords

Navigation