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Abstract

Purpose The goal of this study was to develop a new reliable open surgery suturing simulation system for training medical
students in situations where resources are limited or in the domestic setup. Namely, we developed an algorithm for tools
and hands localization as well as identifying the interactions between them based on simple webcam video data, calculating
motion metrics for assessment of surgical skill.

Methods Twenty-five participants performed multiple suturing tasks using our simulator. The YOLO network was modified
to a multi-task network for the purpose of tool localization and tool-hand interaction detection. This was accomplished by
splitting the YOLO detection heads so that they supported both tasks with minimal addition to computer run-time. Furthermore,
based on the outcome of the system, motion metrics were calculated. These metrics included traditional metrics such as time
and path length as well as new metrics assessing the technique participants use for holding the tools.

Results The dual-task network performance was similar to that of two networks, while computational load was only slightly
bigger than one network. In addition, the motion metrics showed significant differences between experts and novices.
Conclusion While video capture is an essential part of minimal invasive surgery, it is not an integral component of open
surgery. Thus, new algorithms, focusing on the unique challenges open surgery videos present, are required. In this study, a
dual-task network was developed to solve both a localization task and a hand—tool interaction task. The dual network may
be easily expanded to a multi-task network, which may be useful for images with multiple layers and for evaluating the
interaction between these different layers.

Keywords Surgical video data - Tool localization - Surgical Simulation - Motion metrics

Introduction treatment for gallbladder disease [48]. Nevertheless, con-
version to open surgery may be necessary in cases of
medical and surgical complications related to anesthesia,
peritoneal access, pneumoperitoneum, and thermocoagula-
tion [21]. Cholecystectomy is just one of many examples of
open surgery procedures that are being replaced by minimal
invasive surgery (MIS), yet may require reverting to open
surgery in the face of complications. Thus, while the new
generation of surgeons has less experience with open surgery
procedures [11,38], they still must master open surgery skills
to handle the more extreme situations [14].

The recent advances in deep learning and computer vision
have led to a growing number of studies focusing on auto-
matic analysis of surgical video data [1,56]. Since the use

Since Dr. Erich Miihe performed the first laparoscopic chole-
cystectomy in 1985, it has become the gold standard surgical
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of video is an integral part of MIS, most of these studies
have focused on laparoscopic and robotic surgery. In con-
trast, video capture is not well established in open surgery
[51]. Thus, open surgery has not benefited from the many
advantages computer vision and deep learning methods have
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to offer for skill training and automatic assistance. Further-
more, while the use of simulators is inherent to training MIS
[16], assessing open surgery skills, which is no less impor-
tant, is lagging [9,11]. This study will focus on both the
development of novel video analysis algorithms as well as
using these algorithms for assessment of surgical skills.

There are some fundamental differences between the
video data obtained during MIS and during open surgery.
In MIS the video image usually includes 1-2 tool tips which
are in actual use. Therefore, fool presence detection and tool
localization are common goals in multiple studies analyzing
MIS [27,56]. Tool presence detection refers to identifying
the existence of the tool in the image, while tool localiza-
tion indicates providing its position as well. In contrast, the
video image during open surgery will often show not only the
tool tip but also the hand. The image may include 2—4 hands
captured concurrently in a range of positions and activities
as well as stationary tools not held by anyone. For example,
one surgeon might have a needle driver loaded with a needle
in one hand and forceps lifting the tissue in the other hand.
Meanwhile, another surgeon may be assisting by stabilizing
the tissue with one hand and holding scissors in the other.
Generating just a list of all the objects present in the image
ignores the interaction between the objects and thus provides
only a partial description of the image. Full analysis of the
image structure should include the identification of the dif-
ferent tools and hands as well as their interactions.

The traditional teaching and assessment of technical skill
relies heavily on the apprentice model, in which residents
perform the procedure on a patient in the operation room
(OR) under the guidance and evaluation of an expert. This
approach does not provide a standardized method for training
and assessing surgical skills [8]. This led to the development
of simulation-based training and assessment. Traditionally,
this included observer-generated task-specific checklists and
global rating scales. Both methods are time-consuming and
tend to bias [6]. The crucial need for objective methods has
motivated the development of technology-based approaches
[6,39,46,49].

In recent years, there is a growing interest in methods
for tele-education and tele-simulation [41,50]. Furthermore,
with the recent outbreak of the Coronavirus (COVID-19)
pandemic, the need for novel methods of remote education in
general and the training of surgeons in particular has become
clearer than ever [20,37,53]. Sensor-enabled simulations may
be integrated with remote education, thus providing objec-
tive assessment and feedback. Yet, they typically require
expensive equipment and a complex setup, which is more
appropriate for modern simulation centers and not for the
home environment. This need to develop reliable surgical
simulations that use cheap technology is not a new concern;
it has been coming up in the context of developing countries
where the resources are limited [3,23,31,58]. Therefore, in
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this study we will evaluate a system that enables self-training
and assessment of open surgery technical skills at the home
of the trainee. With such a setup in mind, we captured video
data using a standard webcam connected to a laptop. The
algorithms developed are fast and can be analyzed on the
cloud or even locally on the CPU or GPU within a reason-
able processing time, providing evaluation scores in a timely
manner. The simulator used includes a simulation board and
basic surgical tools which can be supplied by mail.

The technical goal of this work is twofold: first, study
both surgical tool localization and surgical image structure;
second, evaluate video-based kinematic analysis of technical
surgical skills. The contributions of our work are the follow-
ing. We developed a variable tissue simulator which we use
for assessment of open surgery skill [6,7]. Task analysis of
the video revealed that open surgery video data require new
categories which were not defined in previous studies on MIS
video data. The task analysis was followed by the develop-
ment of a new near-real time multi-task detection network for
detecting the position of all the tools and hands in the image
as well as identifying which tool is being used by each hand.
We used the output of these algorithms to assess surgical
performance based on multiple motion metrics. Finally, our
multi-task system provides hand location, tool location, and
hand-tool interactions. This combined knowledge led to the
development of a new motion metric that examines the tech-
nique used for holding the tool.

Related works

Multiple studies have demonstrated that kinematic data can
provide valuable information in the assessment of surgical
skill [39,46,49]. Howeyver, in open surgery, most studies use
kinematic data from sensors such as electromagnetic 6DOF
sensors for the measurement of hand motion [7,39,46,49].
These sensors are typically expensive and may have a com-
plex setup as well as interfere with the normal workflow.
Based on the kinematic data, different skill-evaluation met-
rics are calculated, such as procedure time, path length,
number of hand movements, working volume. [6,7]. Each
metric can indicate different aspects of motor skills level; in
this sense, these types of models are highly explainable.
Simulators measuring kinematic data have been devel-
oped for robotic and minimally invasive surgery as well [46].
Several public datasets contain robotic kinematic data with
skills assessment labeling such as IGSAWS and MISTIC-SL
[18,19]. Machine learning methods that predict the surgeon’s
level of expertise based on these metrics have been devel-
oped [12,61], as well as deep learning methods that predict
the level of expertise directly on the data (kinematic or video)
without intermediate feature calculation [13,15]. Kinematic
data can be obtained also by using computer vision meth-
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ods upon video data, e.g., by using bounding boxes of object
detection [28] or landmark detection [10] on hands or tool
tips.

Analysis of MIS video data has raised a range of research
questions. Evaluation of topics such as tool presence detec-
tion [28,30], workflow recognition [5,42], error identification
and skill assessment [28,40] has the potential of making the
surgical environment safer and more efficient. In a recent
study, detection of hands in open surgery videos was assessed
[60].

The goal of this study is to detect tools and hands.
Therefore, the selection of the optimal object detection algo-
rithm, which is the engine of our system, is of the utmost
importance. Current object detection algorithms are gener-
ally grouped into two main families: two-stage algorithms
and one-stage algorithms. In the two-stage algorithms, the
first stage extracts regions of interest, namely those regions
where the objects are expected to be found. The second stage
involves classifying the objects and locating their bounding
boxes. Two stage algorithms, such as Faster R-CNN [47]
and Mask R-CNN [25], are characterized by high accuracy
rates and long run time. As a result, they are not appropriate
for real-time applications. In contrast, the one-stage object
detection algorithms do not require intermediate steps, as
they frame the object detection as a single regression for
both identifying bounding boxes and classifying them in
one stage. These algorithms are less accurate than the two-
stage algorithms, but because they work much faster than the
two-stage algorithms, they are more suitable for real-time
applications. This family includes the SSD algorithm [35],
RetinaNet [34] and all versions of YOLO [43-45]. A new
sub-family of one stage object detection algorithms has been
recently introduced. These algorithms are based on the trans-
former architecture and involve a single stage. While this
renders them more accurate, they are slower and therefore not
suitable for real-time applications [4,36]. In general, if fast
and accurate detection is required, the one-stage YOLOV3 is
considered as a great choice. For example, YOLOvV3 was used
for real-time Jellyfish classification [17], real-time people
detection [24], and real-time pattern-recognition of ground-
penetrating radar images [32]. In the surgical tool detection
domain, two-stage object detection algorithms have been
implemented, such as R-CNN based networks [28] as well
as one-stage algorithms where inference time is significant,
such as YOLO9000 in [29] and RetinaNet in [60] and SSD
in [2].

There are some topics in the computer-vision community
that can be considered as related to the unique challenges of
open surgery, such as hand—object interaction [52], human—
object interaction [33] and object—object interaction [26]. In
[26], the authors propose inter-object graph representation
for recognition of activities in self-driving scenarios. Their
method is based on disentangled graph embedding with direct

edge appearance observation. Their most relevant observa-
tion to our work is that relations between objects are captured
in a single bounding box that contains both interacted objects
strongly rather than in using tight boxes of the objects sepa-
rately.

Methods

The first goal of this work was to detect the position of all the
tools and hands in the image; that is, provide tool localization.
The training set contained images with labeled objects and
their locations. We specified the object’s location by bound-
ing it with a tight box. In the labeled images, all the tools and
all the hands (whether holding a tool or not) were outlined.
We used a YOLO detection network [45] for the tool local-
ization task. It should be noted that in some cases the hand
is empty, for example when palpating tissue. In this case, the
hand may be regarded as the “tool.” However, in most cases
the hand is holding a tool. For simplicity, when we use the
term tool localization, we mean all the tools and all the hands
in the image.

The second goal was to determine the hand—tool interac-
tion. In a previous study [22], we used the output of the ool
localization algorithm combined with spatial assumptions to
match between the hand and the tool. For each hand detected
we examined whether there was a tool in close proximity
and if so, it was assumed it was being used by that hand.
The labeling for such a task was simpler. We only needed to
annotate start and end time of each tool usage. Therefore, for
this task we labeled the full dataset (whereas for fool local-
ization, we only labeled a subset of the images, as in other
deep learning studies).

However, this approach is based on heuristic assumptions
and prone to manual fine tuning. In this study, we will develop
a standard approach using deep learning to provide a general
solution. For this, we added another layer of annotation. In
each image annotated for the rool localization task we added
another set of bounding boxes. In this new set, each pair of
hand+tool is outlined using a tight box (Fig. 1). Now we can
use a detection network such as YOLO for determining the
hand—tool interaction as well. It should be noted that now we
have two sets of ground truth labels for the hand—tool inter-
action task. The first includes the entire video set; however,
it includes only the interaction and not its spatial position.
The second set includes only a small sample of the images.
This set includes bounding boxes and is used for training and
testing using traditional machine learning approaches. There
are two naive methods to train the network to provide the
complete image structure (tool localization and hand—tool
interaction). The first is to train one network for detecting
the tools and another, separate network for detecting the
combination of hand—tool interaction. As we will show in
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Tool+Hand bounding boxes

Tool localization bounding boxes

Fig.1 Each bounding box in the left figure represents a hand—tool interaction object, and every box in the right figure represents tool or hand. The

text in the top-left corner outputs the final decision on the tool usage

the results, this method provides a good outcome; however,
analysis requires twice the computation power. The second
approach would be to combine all the labeled data (the tools,
the hands and the hand+tool) then train one network with
the entire dataset. This approach saves computation power;
however, as we will see, it leads to a significant decrease in
accuracy.

Therefore, in this study we developed a multi-task detec-
tion network to solve both (tool localization and hand-tool
interaction) challenges. The multi-task network is based on
the YOLO network; however, we updated the final layers to
support multiple detection tasks. Using this new network, we
gain from both worlds: our detection is as good as two sepa-
rate networks while the required computation power is only
slightly more than one network.

Variable tissue simulator

The variable tissue simulator was developed to simulate a
suturing task to assess decision making during suturing tasks
of varying difficulty. The simulator consists of a board to
which simulated material is connected by two clips [6]. The
task was to place three interrupted instrument-tied sutures on
two opposing pieces of the material. Two different materials
were used: tissue paper simulating friable tissue, and rubber
balloons simulating arteries. Each participant was provided
with three tools: a needle driver, surgical forceps, and suture
scissors. Top view video data were captured in a frame rate
of 30 FPS.

Data collection
Eleven medical students, one resident, and 13 attending sur-

geons participated in the study. Each participant performed
twice on the friable tissue simulator and twice on the artery
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simulator. Thus, there were a total of 100 videos, each
approximately 2—6 min long. This dataset was split into two
sets. Where the first contains 15 videos, we will refer to it
as train video set and the second, test video set, contains
the rest. From the train video set 924 frames were picked
and split to seven sub-sets of 132 images for k-fold cross-
validation. Each selected frame was labeled with two sets of
bounding boxes: the first for the tool localization task and
the second for the hand—tool interaction task. In addition,
from 5 other videos, 200 frames were chosen for a fest set.
These frames were labeled in the same method. The labeling
was performed with Microsoft’s Visual Object Tagging Tool.
Finally, the entire video dataset was labeled for the start and
end time of each tool usage using Behavioral Observation
Research Interactive Software (BORIS). As mentioned, we
have two sets of ground truth labeled data. The first includes
tight bounding boxes and is used for the training and testing
of the different classifiers. In this set, we require an /oU of
at least 0.5 with the ground truth bounding box to be consid-
ered as atrue prediction, and average precision (AP) is used to
assess the results. The second labeled dataset includes all the
data; however, it does not include any bounding boxes, only
start and end point. Therefore, this set is only used for test-
ing the hand—tool interaction performance. This is assessed
using precision, recall, and F1 metrics.

The following data augmentation was used during the
training. Horizontal flip applied with a probability of 0.5.
We uniformly randomly rotated the images and automatically
fit corresponding bounding boxes, based on its transforma-
tion matrix in the range of £7°. In addition, we use the
standard PyTorch Torchvision ColorJitter module, which
randomly changes the color values with the following param-
eters: brightness=0.2, contrast=0.2, saturation=0.1, and
hue=0.05. The training and evaluation were performed on a
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NVIDIA Tesla V100 Volta GPU Accelerator 32GB Graphics
Card.

Naive approaches

Two naive approaches may be used for solving the tool
localization and hand-tool interaction problems. The first
approach is to train two separate networks, one for each
problem. One network will include five categories of tool
types—D and the second the eight classes of hand—tool inter-
action combinations—S. The second approach is to train one
integrated system for both problems. In this case, the merged
fourteen categories—D U S will be used. For all tasks, a
YOLOV3 (YOLO) network was used.

All three systems were trained under similar conditions:
Adam optimizer up to 400 epochs with learning rate of 1073
and additional 200 epochs with learning rate of 10~%. The
model selected was the model with the highest AP with
respect to the validation set. During the test session, each
frame was tested twice, the first time with a horizontal flip
and the second time without. The models are tested on the
200 test frames as defined in the previous section.

Multi-task deep neural network approach

Our architecture is an extension of the YOLO network [45].
YOLO is a fully convolutional network that consists of 106
layers. To provide detection at multiple image scales YOLO
uses multiple detection heads. Each head consists of four con-

Fo-} oo mp //

-

volutional layers and one YOLO prediction layer. The input
image size is 416 x 416, and three color channels are used. In
our new architecture, each detection head was split after the
second convolutional layer. We will refer to the layers after
the split as branches. Hence, every original detection head
was split into two branches: a hand—tool interaction branch
and a tool localization branch (see Fig. 3). The output of
each branch is shown in Fig. 1. We will refer to all layers
that are accessible to both branches as the trunk of the net-
work. The new architecture is depicted in Fig. 2. YOLO uses
non-maximum suppression (NMS) to address the problem of
multiple detections of the same object. For the tool local-
ization branch, an additional NMS was added. It suppressed
multiple tools in the same area while allowing for tools and
hands to overlap.

Training method

Technically, we have two datasets: one for the fool local-
ization task and the other for the hand—tool interaction task.
Note that the two datasets are based on the same set of images
and differ only by the tagging. Each epoch contains batches
from the two datasets. The batches are ordered in round-robin
fashion, where after each tool localization batch was placed,
a hand—tool interaction batch was used. While training for
one task, the branch dedicated to the other task was frozen.
The network was trained by using Adam optimizer with a
learning rate of 103 for the first 200 epochs and a learning
rate of 10~ for an additional 100 iterations. We trained in
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Detection Head

e

Tool+Hand
Tool ! branch
localization !
branch

Fig. 3 The split in the detection head to fool localization branch and
hand—tool interaction branch

k-fold cross-validation manner (K = 7), where every model,
in addition to its validation, also tested on our test-set.

Inference of tool usage

The goal of the hand—tool interaction was to provide exactly
one bounding box for each hand visible in the image. When
unsuccessful, data from the fool localization branch may be
used to help infer tool usage. This includes two scenarios
(see Fig. 4):

Tool+Hand bounding box

Scenario 1—no bounding box

This scenario includes situations in which the hand—tool
interaction branch provides no bounding box for one of the
hands, yet the tool localization branch detects that hand. In
this case, we search the output of the tool localization branch
for an overlap between the hand’s bounding box and one
of the tool’s bounding boxes, described more specifically in
[22].

Scenario 2—multiple bounding boxes

This scenario includes situations in which the hand—tool
interaction branch provides multiple bounding boxes of one
of the hands, and we need to select the correct bounding box.
All the bounding boxes for that hand will be compared with
all the bounding boxes of all the tools detected by the tool
localization branch; the pair with the largest overlap will be
selected.

Smoothing process

For each frame, the final tool-hand interaction was based on
the majority of the previous 15 frames. In addition, empiri-
cal data revealed that when the hands were moving fast, fool
localization was significantly reduced due to image blurri-
ness while hand detection was not reduced. Therefore, hand
speed was calculated based on hand detection data. Decisions
regarding tool-hand interaction were not changed during fast
movement. The smoothing process only influenced the deci-
sion of which tools were being used at any given moment
and did not affect the bounding boxes provided by the
system.

Fig.4 a Scenario 1: No hand—tool interaction bounding box for the right hand, b Scenario 2: There are two hand—tool interaction bounding box

for the right hand
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Table 1 Average precision (A Psg) of each class in the tool localization net-
work, Tool+Hand network, combined results of tool localization network and
Tool+Hand network, and integrated network with all 13 classes. The results
are with respect to the test set

Tool localization Tool+Hand Regular Yolo (13)

(A Ps5g) (A Psg) with all classes
(APso)
Right hand 0.956 0.766
Left hand 0.947 0.783
Needle driver 0.839 0.740
Forceps 0.728 0.659
Scissors 0.845 0.843
mAP (Tool 0.863 0.758
localization only)
Scissors in right hand 0.807 0.731
Scissors in left hand 0.827 0.751
Needle driver in right 0.927 0.916
hand
Needle driver in left 0.907 0.876
hand
Forceps in right hand 0.918 0.854
Forceps in left hand 0.954 0.839
Empty right hand 0.787 0.001
Empty Left hand 0.838 0.000
mAP (Tool + Hand 0.871 0.621
only)
mAP (Both tasks) 0.868 0.674
Results

Results naive approaches

Table 1 summarizes the results for the naive approaches. The
tool localization only network yielded mAP of 0.863 and
the integrated network achieved only 0.758 on these classes.
The Tool+Hand only network has mAP of 0.871 on it’s 8
classes when the combined network has only 0.621. In total,
the separate networks show significantly better results, with
mAP of 0.868 than the one integrated system, with mAP of
0.674.

Results multi-task deep neural network approach

The performance of the multi-task system in the fool local-
ization framework is depicted in Table 2. The detection
was slightly better than the two separate networks; this is
a known effect of multi-task training. The system yielded
an expectation mAP = 0.874 for the tool localization task,
mAP = 0.885 for the hand—tool interaction task, and the
overall results were mAP = 0.881. The results are based on
the 200 test set images. In the results table, one can see also
the validation set results.

Tool-hand interaction was also tested using the 85 full
videos from which frames were not taken for the training pro-
cess. For 3.92% of the data the hand—tool interaction branch
was unsuccessful and tool usage was inferred using the data
from the fool localization branch. The precision, recall, and
F of each tool as well their average values and the total
accuracy were calculated (Table 3).

Motion-based metrics for surgical skills
assessment

In this section, we use our algorithm to develop a fully auto-
matic skills assessment system. In our prior studies, we have
measured performance using motion metrics such as pro-
cedure time, path length, number of hand movements, and
working volume. [6,7] In these studies, sensors were used
to measure the hand position. Here, video data were used
to analyze the motion pattern and then derive the metrics.
Most sensor systems provide three-dimensional motion data
dimensions. Our method relies on two-dimensional projec-
tion of the motion data on the image plane. Nevertheless,
we get statistically significant separation between medical
students and experts.

Metric computation

The three traditional metrics calculated are duration, path
length, and number of movements. The output of the hand-
tool interaction algorithm is used to define the duration of
the procedure. We define the beginning of the procedure as
the first frame in which at least one hand is using a tool and
the end of the procedure as the last frame in which one of the
hands is using a tool. The procedure duration is calculated as
the total number of frames divided by 30. The location of an
object is defined as the center point of its bounding box. Path
length is the two-dimensional distance the hands moved, in
the image plane, from the starting point until the end of the
suturing task.
The velocity v of each hand is calculated as v =
/ v)% + v%, where vy an vy are the first order numerical deriva-
tives calculated by the centered difference formula on x and
y position vectors. The hand is considered as static when
the velocity is below the threshold value of 25pixel/sec.
Finally, the number of movements is defined as the number
of times velocity crosses the threshold value divided by two.
In addition to the three traditional metrics in this study,
we define two new metrics. Both metrics assess the holding
angle of the forceps. The holding angle of the forceps was
defined as the aspect ratio of the bounding box of the forceps
width/height. The first metric is the mean of the aspect
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Table 2 The validation and test results of Tool localization and hand—tool interaction results (sevenfold cross-validation). All values are in terms

of A Psg
Tool+Hand Detection
Scissors in Scissors in | Needle driver | Needle driver | Forceps in | Forceps in Empty Empty AP
right hand left hand in right hand in left hand right hand left hand right hand | left hand m
Validation 0.896+ 0.890+ 0.955+ 0.954+ 0.898+ 0.901+ 0.909+ 0.91+ 0.914+
(AVG+SD) 0.035 0.053 0.028 0.02 0.04 0.041 0.020 0.02 0.017
Test 0.849+ 0.820+ 0.926+ 0.917+ 0.915+ 0.92+ 0.87+ 0.864+ 0.885+
(AVG+SD) 0.045 0.051 0.009 0.013 0.018 0.031 0.011 0.014 0.012
Tool localization
Right hand Left hand Needle driver Forceps Scissors mAP
Validation 0.932+ 0.920+ 0.937+ 0.866+ 0.959+ 0.923+
(AVG+SD) 0.012 0.013 0.016 0.038 0.028 0.015
Test 0.937+ 0.933+ 0.856+ 0.756+ 0.890+ 0.874+
(AVG+SD) 0.01 0.009 0.014 0.008 0.016 0.004
Table 3 Tool usage task results Tool Not smoothed Smoothed
Precision Recall F1 Precision Recall F1
Left hand 0.606 0.805 0.692 0.693 0.808 0.746
Right hand 0.942 0.949 0.945 0.943 0.959 0.950
Needle driver 0.970 0.946 0.958 0.972 0.957 0.965
Forceps 0.893 0.906 0.900 0.909 0.907 0.908
Scissors 0.842 0.683 0.754 0.874 0.755 0.810
Mean 0.850 0.858 0.850 0.878 0.877 0.876
Accuracy 0.924 0.935

ratio throughout the procedure. The second is the standard
deviation of the aspect ratio.

Results

As anticipated from previous studies, the attending sur-
geons performed the task in less time, shorter path length,
and smaller number of movements (Fig. 5). The attending
surgeons held the forceps at approximately 45° while the stu-
dents held it in a more upright position. Furthermore, lower
standard deviation was measured for attending surgeons, sug-
gesting a more stable and consistent grip of the forceps. Since
this is a new metric, further analysis is required for provid-
ing accurate interpretation of these findings. However, the
method might provide new valuable information for the train-
ing of new surgeons.

Discussion

This study focused on the analysis of video data captured
using a webcam during open surgery simulation. Our premise
was that in open surgery, in addition to detecting the presence
of the tools and hands, their interaction needs to be identified.
We examined two naive approaches, performing both tasks
using one YOLO and using a full network for each task.
Since both approaches aimed at solving a standard object
detection problem, we would have expected that the results of
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the integrated system be close to the combined results of the
two separate systems. However, the two separate networks
yielded significantly better results. A possible explanation
for the decreased performance of the integrated network in
comparison with the separated networks may be the extended
feature overlap between corresponding classes. While using
two different networks to solve the two tasks provided good
results, this solution is expensive in terms of run time, which
is critical for fast simulation analysis.

Therefore, a dual-task network was constructed and a
training scheme was developed. The dual-task network
performance was similar to that of two networks, while
computational load was only slightly bigger than one net-
work. The system was capable of analyzing approximately
35 frames per second on a NVIDIA Tesla V100 Volta GPU
and 15 frames per second on a NVIDIA GeForce GTX 1060
GPU. Thus, feedback may be provided in a timely manner.

We chose YOLO as our base network due to its short run-
time. The network performed very well on our dataset and
achieved a mean average precision (mAP) of 87.4 for tool
detection. Jin et al. [28] trained a slower two-stage object
detection network based on faster R-CNN to detect laparo-
scopic tools and reached a mAP of 63.1. The data analyzed
in that study were more complex than our data. While our
data were captured with a static camera in a simulation envi-
ronment, in [28] the data were the m2cail 6-tool-locations
dataset, which includes videos taken during cholecystectomy
by a mobile endoscopic camera. This suggests that net-
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work selection may be based on the combination of run-time
limitations and data complexity. This option was explored
by Soviany et al. [54]. In this study, an image difficulty
predictor was developed. Based on the assumed difficulty
the system decided whether two-stage object detection was
required for an image or whether good performance could
be achieved with a one stage detector. This approach may
balance between run-time limitations and detection require-
ments.

The dual-task approach developed in this study may be
easily expanded to a multi-task approach if needed. A multi-
task system could identify multiple structures in an image.
For example, in the surgical context, it could help identify

the arm-hand interaction and tool-hand interaction as well
as identify if the forceps are holding a needle. This approach
is not limited to the surgical arena. In [59], basketball move-
ments and pass relationships were studied. For the task, two
separate YOLO networks were trained, one for the players
(with and without the ball) and one for their jersey num-
ber. This could have been done using one dual-task network,
saving run-time. Another example comes from the field of
autonomous driving, where analysis of critical events often
depends on object—object interaction between cars, pedestri-
ans, road signs, and other prominent objects, and naturally
must be evaluated in real time [26].

@ Springer
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Video-based motion analysis is a much cheaper and sim-
pler approach than sensor kinematics based assessment.
Sensor systems (such as 3D Guidance 6DOF Sensors) may
cost thousands of US dollars, while in this study a simple
webcam was used. In addition, connecting the participants to
the sensor system is time consuming. Using RGBD cameras
and LIDAR technology may provide a good combination of
3D information, fast setup time, and low prices. In previous
works, these technologies were used for action recognition
in OR, medical training, and assessment [55,57]. However,
these technologies are not available at most households. Web-
cams are nowadays a standard component of every computer
station or laptop. In addition, due to the COVID-19 outbreak
people feel very comfortable in operating this technology.
Using a webcam, measuring performance may be as easy
as recording a Zoom session. Therefore, the system provides
the opportunity for fully automated skill assessment that may
be used by the resident or medical student independently.

Although the system only captured two-dimensional data,
our data showed significant differences between experts and
novices. Furthermore, in addition to the traditional motion
metrics, we identified new metrics that might suggest dif-
ferent techniques for holding the tools and perhaps provide
more detailed feedback for improvement. Tool orientation
showed that experienced surgeons hold the tool differently
than medical students. Moreover, the variability over time of
tool orientation was significantly higher for medical students.
This suggests they are still exploring the optimal holding
technique while experienced surgeons have developed a sta-
ble approach. Nevertheless, this is a new metric and more
work is required to fully understand it.

One limitation of our study was that we used the same
webcam. For the system to be generalized for domestic use,
the DNN should be trained using data from a wide range of
cameras. The focus of this current study was to demonstrate
that a webcam may be used for assessing technical skill.
Thus, data from 13 attending surgeons were captured. This
limited our work to a hospital area, and since the focus was
comparing experts and novices, we kept the system standard.
The next phase of our work will be to collect data using
multiple systems. This may be done by the medical students
using their own equipment.

In this study, we focused on data collected from a med-
ical simulator. While this provides independent merit as an
approach for assessing skill and providing automatic feed-
back, we believe the multi-task approach suggested in this
study will be beneficial when analyzing data for more com-
plex simulation or even for the real operating room.

Supplementary Information  The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11548-022-02559-
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