Skip to main content
Log in

A semi-supervised learning framework for micropapillary adenocarcinoma detection

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Micropapillary adenocarcinoma is a distinctive histological subtype of lung adenocarcinoma with poor prognosis. Computer-aided diagnosis method has the potential to provide help for its early diagnosis. But the implementation of the existing methods largely relies on massive manually labeled data and consumes a lot of time and energy. To tackle these problems, we propose a framework that applies semi-supervised learning method to detect micropapillary adenocarcinoma, which aims to utilize labeled and unlabeled data better.

Methods

The framework consists of a teacher model and a student model. The teacher model is first obtained by using the labeled data. Then, it makes predictions on unlabeled data as pseudo-labels for students. Finally, high-quality pseudo-labels are selected and associated with the labeled data to train the student model. During the learning process of the student model, augmentation is added so that the student model generalizes better than the teacher model.

Results

Experiments are conducted on our own whole slide micropapillary lung adenocarcinoma histopathology image dataset and we selected 3527 patches for the experiment. In the supervised learning, our detector achieves a precision of 0.762 and recall of 0.884. In the semi-supervised learning, our method achieves a precision of 0.775 and recall of 0.896; it is superior to other methods.

Conclusion

We proposed a semi-supervised learning framework for micropapillary adenocarcinoma detection, which has better performance in utilizing both labeled and unlabeled data. In addition, the detector we designed improves the detection accuracy and speed and achieves promising results in detecting micropapillary adenocarcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yoshizawa A, Sumiyoshi S, Sonobe M, Kobayashi M, Fujimoto M, Kawakami F, Tsuruyama T, Travis WD, Date H, Haga H (2013) Validation of the iaslc/ats/ers lung adenocarcinoma classification for prognosis and association with egfr and kras gene mutations: analysis of 440 Japanese patients. J Thorac Oncol 8(1):52–61

    Article  CAS  PubMed  Google Scholar 

  2. Kamiya K, Hayashi Y, Douguchi J, Hashiguchi A, Yamada T, Izumi Y, Watanabe M, Kawamura M, Horinouchi H, Shimada N, Kobayashi K, Sakamoto M (2008) Histopathological features and prognostic significance of the micropapillary pattern in lung adenocarcinoma. Modern Pathol 21(8):992–1001

    Article  CAS  Google Scholar 

  3. Travis WD, Brambilla E, Noguchi M, Nicholson AG, Geisinger KR, Yatabe Y, Beer DG, Powell CA, Riely GJ, Van Schil PE, Garg K, Austin HMJ, Asamura H, Rusch WV, Hirsch FR, Scagliotti G, Mitsudomi T, Huber MR, Ishikawa Y, Jett J, Sanchez Cespedes M, Sculier JP, Takahashi T, Tsuboi M, Vansteenkiste J, Wistuba I, Yang PC, Aberle D, Brambilla C, Flieder D, Franklin W, Gazdar A, Gould M, Hasleton P, Henderson D, Johnson B, Johnson D, Kerr K, Kuriyama K, Soo Lee J, Miller V, Petersen I, Roggli V, Rosell R, Saijo N, Thunnissen E, Tsao M, Yankelewitz D (2011) International association for the study of lung cancer/american thoracic society/European respiratory society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol 6(2):244–285

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bast Jr RC, Holland JF (2010) Holland Frei Cancer Medicine 8 PMPH-USA

  5. Maeda R, Isowa N, Onuma H, Miura H, Harada T, Touge H, Tokuyasu H, Kawasaki Y (2009) Lung adenocarcinomas with micropapillary components. Gen Thorac Cardiovasc Surg 57(10):534–539

    Article  PubMed  Google Scholar 

  6. Yang J, Geng C, Wang H, Ji J, Dai Y (2019) Classification on histological subtypes of lung adenocarcinoma from low-resolution CT images based on densenet. J ZheJiang Univ (Eng Sci) 53(6):1164–1170

    Google Scholar 

  7. Makimoto Y, Nabeshima K, Iwasaki H, Miyoshi T, Enatsu S, Shiraishi T, Iwasaki A, Shirakusa T, Kikuchi M (2005) Micropapillary pattern: a distinct pathological marker to subclassify tumours with a significantly poor prognosis within small peripheral lung adenocarcinoma (\(\le 20 mm\)) with mixed bronchioloalveolar and invasive subtypes (Noguchi’s type C tumours). Histopathology 46(6):677–684

    CAS  PubMed  Google Scholar 

  8. Teramoto A, Tsukamoto T, Kiriyama Y, Fujita H (2017) Automated classification of lung cancer types from cytological images using deep convolutional neural networks. BioMed research international 2017

  9. Zhu X, Goldberg AB (2009) Introduction to semi-supervised learning. Synth Lect Artific Intell Mach Learn 3(1):1–130

    Google Scholar 

  10. Wu K, Yap K (2006) Fuzzy SVM for content-based image retrieval: a pseudo-label support vector machine framework. IEEE Comput Intell Mag 1(2):10–16

    Article  Google Scholar 

  11. Lee D (2013) Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks In: Workshop on challenges in representation learning (ICML) p 896

  12. Xu X, Li W, Xu D, Tsang IW (2015) Co-labeling for multi-view weakly labeled learning. IEEE Transactions Pattern Anal Mach Intell 38(6):1113–1125

    Article  Google Scholar 

  13. Ba LJ, Caruana R (2013) Do deep nets really need to be deep? arXiv preprint arXiv:1312.6184

  14. Wang X, Chen H, Gan C, Lin H, Dou Q, Tsougenis E, Huang Q, Cai M, Heng P (2019) Weakly supervised deep learning for whole slide lung cancer image analysis. IEEE Transactions Cybern 50(9):3950–3962

    Article  Google Scholar 

  15. Liu Y, Gadepalli K, Norouzi M, Dahl GE, Kohlberger T, Boyko A, Venugopalan S, Timofeev A, Nelson PQ, Corrado GS, Jason D H, Peng L, Stumpe MC (2017) Detecting cancer metastases on gigapixel pathology images arXiv preprint arXiv:170302442

  16. Gong J, Liu J, Hao W, Nie S, Zheng B, Wang S, Peng W (2020) A deep residual learning network for predicting lung adenocarcinoma manifesting as ground-glass nodule on ct images. Eur Radiol 30(4):1847–1855

    Article  PubMed  Google Scholar 

  17. Wei JW, Tafe LJ, Linnik YA, Vaickus LJ, Tomita N, Hassanpour S (2019) Pathologist-level classification of histologic patterns on resected lung adenocarcinoma slides with deep neural networks. Scientific Rep 9(1):1–8

    Google Scholar 

  18. Yan J, Shi F, Zhao M, Wang Z, Yang Y, Chen S (2019) Confocal raman sensing based on a support vector machine for detecting lung adenocarcinoma cells. IEEE Sensors J 19(21):9624–9633

    Article  CAS  Google Scholar 

  19. Yang H, Deng R, Lu Y, Zhu Z, Chen Y, Roland JT, Lu L, Landman BA, Fogo AB, Huo Y (2020) Circlenet: anchor-free detection with circle representation arXiv preprint arXiv:200602474

  20. Duan K, Bai S, Xie L, Qi H, Huang Q, Tian Q (2019) Centernet: keypoint triplets for object detection In: Proceedings of the IEEE/CVF International Conference on Computer Vision pp 6569–6578

  21. Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: unified, real-time object detection In: Proceedings of the IEEE conference on computer vision and pattern recognition pp 779–788

  22. Xie Q, Luong M, Hovy E, Le QV (2020) Self-training with noisy student improves imagenet classification In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition pp 10687–10698

  23. Bulten W, Pinckaers H, van Boven H, Vink R, de Bel T, van Ginneken B, van der Laak J, Hulsbergen-van de Kaa C, Litjens G (2020) Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study. Lancet Oncol 21(2):233–241

    Article  PubMed  Google Scholar 

  24. Tolkach Y, Dohmgörgen T, Toma M, Kristiansen G (2020) High-accuracy prostate cancer pathology using deep learning. Nat Mach Intell 2(7):411–418

    Article  Google Scholar 

  25. Marini N, Otálora S, Müller H, Atzori M (2021) Semi-supervised training of deep convolutional neural networks with heterogeneous data and few local annotations: An experiment on prostate histopathology image classification. Med Image Anal 73:102165

    Article  PubMed  Google Scholar 

  26. Shaw S, Pajak M, Lisowska A, Tsaftaris SA, O’Neil AQ (2020) Teacher-student chain for efficient semi-supervised histology image classification arXiv preprint arXiv:200308797

  27. Gao J, Wang J, Dai S, Li LJ, Nevatia R (2019) Note-rcnn: noise tolerant ensemble rcnn for semi-supervised object detection In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 9508–9517

  28. Li J, Yang S, Huang X, Da Q, Yang X, Hu Z, Duan Q, Wang C, Li H (2019) Signet ring cell detection with a semi-supervised learning framework In: International Conference on Information Processing in Medical Imaging pp 842–854

  29. Jocher G, Stoken A, Borovec J, Changyu L, Hogan A, Rai P (2020) ultralytics/yolov5: v3.1-Bug fixes and performance improvements

  30. Wang C, Liao HM, Wu Y, Chen P, Hsieh J, Yeh I (2020) CSPNet: a new backbone that can enhance learning capability of cnn In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops pp 390–391

  31. Lin T, Dollár P, Girshick R, He K, Hariharan B, Belongie S (2017) Feature pyramid networks for object detection In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2117–2125

  32. Zheng Z, Wang P, Ren D, Liu W, Ye R, Hu Q, Zuo W (2020) Enhancing geometric factors in model learning and inference for object detection and instance segmentation arXiv preprint arXiv:200503572

  33. Rahman MA, Wang Y (2016) Optimizing intersection-over-union in deep neural networks for image segmentation In: International symposium on visual computing pp 234–244

  34. Zheng Z, Wang P, Liu W, Li J, Ye R, Ren D (2020) Distance-IoU loss: Faster and better learning for bounding box regression Proceedings of the AAAI Conference on Artificial Intelligence 07:12993–13000

  35. Redmon J, Farhadi A (2017) YOLO9000: better, faster, stronger In: Proceedings of the IEEE conference on computer vision and pattern recognition pp 7263–7271

  36. Neubeck A, Van Gool L (2006) Efficient non-maximum suppression In: 18th International Conference on Pattern Recognition (ICPR’06) pp 850–855

  37. Radosavovic I, Dollár P, Girshick R, Gkioxari G, He K (2018) Data distillation: towards omni-supervised learning In: Proceedings of the IEEE conference on computer vision and pattern recognition pp 4119–4128

  38. Yun S, Han D, Oh SJ, Chun S, Choe J, Yoo Y (2019) Cutmix: regularization strategy to train strong classifiers with localizable features In: Proceedings of the IEEE/CVF International Conference on Computer Vision pp 6023–6032

  39. Xu P, Shi S, Chu X (2017) Performance evaluation of deep learning tools in docker containers In: 2017 3rd International Conference on Big Data Computing and Communications (BIGCOM) pp 395–403

  40. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Kopf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J, Chintala S (2019) Pytorch: an imperative style, high-performance deep learning library. Adv Neural Information Process Syst 32:8026–8037

    Google Scholar 

  41. Loshchilov I, Hutter F (2016) Sgdr: stochastic gradient descent with warm restarts arXiv preprint arXiv:160803983

  42. Tajbakhsh N, Shin JY, Gurudu SR, Hurst RT, Kendall CB, Gotway MB, Liang J (2016) Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Transactions Med Imag 35(5):1299–1312

    Article  Google Scholar 

  43. Graham S, Epstein D, Rajpoot N (2020) Dense steerable filter cnns for exploiting rotational symmetry in histology images. IEEE Transactions Med Imag 39(12):4124–4136

    Article  Google Scholar 

  44. Rezatofighi H, Tsoi N, Gwak J, Sadeghian A, Reid I, Savarese S (2019) Generalized intersection over union: a metric and a loss for bounding box regression In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition pp 658–666

  45. Ning C, Zhou H, Song Y, Tang J (2017) Inception single shot multibox detector for object detection In: 2017 IEEE International Conference on Multimedia & Expo Workshops (ICMEW) pp 549–554

  46. Ren S, He K, Girshick R, Sun J (2016) Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions Pattern Anal Mach Intell 39(6):1137–1149

    Article  Google Scholar 

  47. Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C, Berg AC (2016) SSD: single shot multibox detector In: European conference on computer vision pp 21–37

  48. Redmon J, Farhadi A (2018) YOLOv3:An incremental improvement arXiv preprint arXiv:180402767

Download references

Funding

This study was funded by the Primary Research & Development Plan of Shandong Province (No.2017GGX10112), the Natural Science Foundation of Shandong Province (ZR2020MF051), National Natural Science Foundation of China (NO.81871508, NO.61773246,NO.61572300).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanhui Ding or Yanna Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Ding, Y., Xiao, W. et al. A semi-supervised learning framework for micropapillary adenocarcinoma detection. Int J CARS 17, 639–648 (2022). https://doi.org/10.1007/s11548-022-02565-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-022-02565-8

Keywords

Navigation