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Abstract
Purpose: We tackle the problem of online surgical phase
recognition in laparoscopic procedures, which is key in devel-
oping context-aware supporting systems. We propose a novel
approach to take temporal context in surgical videos into
account by precise modeling of temporal neighborhoods.
Methods: We propose a two-stage model to perform phase recognition.
A CNN model is used as a feature extractor to project RGB frames into a
high-dimensional feature space. We introduce a novel paradigm for surgi-
cal phase recognition which utilizes graph neural networks to incorporate
temporal information. Unlike recurrent neural networks and temporal
convolution networks, our graph-based approach offers a more generic
and flexible way for modeling temporal relationships. Each frame is a
node in the graph and the edges in the graph are used to define tempo-
ral connections among the nodes. The flexible configuration of temporal
neighborhood comes at the price of losing temporal order. To miti-
gate this, our approach takes temporal orders into account by encoding
frame positions, which is important to reliably predict surgical phases.
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Results: Experiments are carried out on the public Cholec80
dataset that contains 80 annotated videos. The experimen-
tal results highlight the superior performance of the proposed
approach compared to the state-of-the-art models on this dataset.
Conclusion: A novel approach for formulating video-based surgi-
cal phase recognition is presented. The results indicate that tem-
poral information can be incorporated using graph-based models
and positional encoding is important to efficiently utilize tem-
poral information. Graph networks open possibilities to use evi-
dence theory for uncertainty analysis in surgical phase recognition.

Keywords: Positional encoder, graph neural networks, surgical phase
recognition, workflow analysis, surgical data science, surgical AI

1 Introduction
Laparoscopic procedures have gained popularity by avoiding large open inci-
sions, decreasing blood loss and pain leading to faster patient recovery time
[13]. This however results in new challenges for the surgeon, such as indirect
vision, decrease in tactile sensations and the use of laparoscopic instru-
ments. Research in computer-assisted intervention (CAI) has thus focused
on developing context-aware supporting systems to alleviate these challenges
intraoperatively. Identifying the steps of a procedure, commonly referred to
as surgical phases, is a key building block for such supporting systems and
allows partitioning procedures into sets of well-defined objectives [11, 13].
Intra-operative surgical phase detection assists surgery monitoring, decision
support by delivering context-related information [11, 13, 14] during the proce-
dure, and even developing early warning systems [17]. Such systems can further
help by facilitating postoperative reviews and providing a tool for analyzing
procedures hence paving the way toward identifying best practices.

The availability of intraoperative video data during laparoscopic interven-
tions has spawned many vision-based approaches for surgical phase recog-
nition. Processing high-dimensional video data is still demanding due to
computational requirements, hence two-stage methods are used in the liter-
ature. A concise representation is generated for each frame in the first stage
and then sequences of frame representations are utilized in the second stage to
incorporate temporal information. Convolutional neural networks (CNN) have
become the method of choice for generating robust frame features through
building task-specific models to map RGB images into a robust feature space,
for example AlexNet in EndoNet [15], ResNet in TeCNO [3], Opera [4], Deep-
Phase [19] and open procedures [11], and I3D in SWNet [18]. In this stage,
a frame or a window of frames, e.g. I3D, is processed separately without
considering the fact that the data are sequential.

In the second stage, to benefit from the temporal nature of the task, models
are proposed to rely on sequential information for making robust and smooth
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predictions. Early works have taken temporal context into account using graph-
ical models such as hidden Markov models (HMMs) and Hierarchical HMMs,
conditional random fields (CRFs), and Bayesian networks [1]. However, over
the last decade, deep learning (DL) models have gained significant success in
using temporal context and have replaced probabilistic methods. Recurrent
neural networks have feedback connections and gated cells to build an inter-
nal state (memory) from a time series. Long short-term memory (LSTM),
multi-layer LSTM [10], Bidirectional LSTM [11, 14] have been deployed for
surgical phase recognition. Another type of network is temporal convolution
networks (TCNs) that rely on dilated convolution applied on the temporal axis
to process a time series [6]. Unlike LSTMs, TCNs do not build a memory but
combine multi-layer and dilated convolutions to expand the receptive field size
for a wider temporal context [3]. TCNs thus offer an implicit control over the
receptive field of the temporal model. The temporal receptive field needs to be
adapted for different domains. TCNs utilized multi-layer networks, where ker-
nels are dilated further at each layer to achieve long-term temporal context.
More recently, OperA, a transformer-based model [16], was proposed to encode
temporal relationships relying on self-attention mechanism for surgical phase
recognition [4]. Self-attention permits exploring long-term relationships in con-
trast to LSTMs that can forget previous information, or TCNs that require
stacking layers to achieve high receptive fields.

In this work, we propose an approach based on graph neural networks
(GNNs) to incorporate temporal information. We define a temporal graph
over a video, where nodes are video frames and edges connect nodes that are
temporally adjacent. Message passing is used to incorporate information from
neighboring frames and to update the internal state of nodes. We developed a
GNN-based temporal decoder for three main reasons. Firstly, the graph struc-
ture allows us to precisely define temporal neighborhoods, hence removing the
need for using multiple layers and stages unlike TCNs. Secondly, information
from all temporally connected frames are accessible during the update process
of each node. This is in contrast to LSTMs that build a memory state and
update the memory at each time step. Thirdly, as the temporal aggregation
function and the node state update function are shared among all nodes, such a
model has a much lower number of parameters compared to transformer-based
models. This is especially important in the case of surgical phase recognition
due to scarcity of data.

Temporal aggregating can happen in any order. It does not have any notion
of a frame’s temporal position, which is important to disambiguate differ-
ent phases. We propose to encode positional information as edge attributes,
inspired by the work in transformers [4, 16]. We argue that encoding positions
are important to effectively build and use temporal context.

We performed a series of experiments on the Cholec80 dataset and
compared with state-of-the-art models. Experiments show that our model
successfully incorporated temporal context for building robust models and
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Fig. 1 Position-aware Temporal Graph. Each node in the graph denotes a frame in the
video, which is represented by a feature vector (gray boxes). Frame relative position is
encoded on the edges, which are denoted by different color here, e.g. blue one time step
and green 4 time step. During message passing, each node, highlighted in green, aggregates
information from all its neighbors and update its embedding (the gray box). The PATG
graph is constructed over a video and passed through several layers, illustrated by gray
boxes, to update node embeddings via message passing. The updated embeddings at final
layer is used to predict phase labels, illustrated by the color bars.

outperformed state-of-the-art models. To our knowledge, this is the first GNN-
based model for surgical phase recognition. This graph representation brings
us closer to graphical models and potentially opens possibilities to study uncer-
tainty in phase recognition using evidence theory in addition to Bayesian deep
learning.

2 Method
Our proposed approach consists of an encoder and decoder. The encoder is
a SEResNet50 convolutional network to extract high-level concise representa-
tions [9]. The encoder is trained for frame-wise phase recognition only. Our
model only relies on phase annotations for training, unlike other methods that
rely on other sources of information, like instrument in case of [3, 4]. Although
Cholec80 videos are annotated with both phase and instrument labels [15],
frame-level instrument labels are not always available. Generating such labels
is more expensive and time-consuming compared with phase labels. The last
fully connected layer of the encoder is used to extract 2048-dimension fea-
ture vectors. The frame representations are then fed into the temporal model
described next.

2.1 Graph Neural Networks
A graph neural network (GNN) is a class of neural networks designed to rep-
resent data in a structured manner using graphs. Graphs can be of arbitrary
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topology, and thus, makes this a very flexible representation that can encode
a variety of spatiotemporal relationships. GNNs offer to model problems using
spectral graph theory and generalize convolutions to non-Euclidean data for
different tasks, such as classification and regression [5, 12]. This is achieved
by a differentiable implementation of message passing that enables exchanging
vector messages between nodes in a graph through a form of belief propagation
and utilizing neural networks for updating messages and node embeddings.
Formally, a graph G can be defined as a pair (V, E), where V is a set of nodes
and E is a set of edges indicating node adjacency. Each node vi ∈ V is repre-
sented by a feature vector xi ∈ RD, where D is 2048 in our case. The edges
define neighborhoods over the graph, which are used to aggregate information.
Message passing or neighborhood aggregation is defined as:

xk+1
i = fk(xk

i , Aggj∈N(i)g
k(xk

i , x
k
j )) (1)

where f and g are differentiable functions, i.e., neural networks, and Agg is
a permutation invariant and differentiable function. During each iteration of
the message passing, the embedding xi is updated according to the aggre-
gated information from vi’s neighborhood denoted by N(i). As the iterations
progress each node will have access to information from further away nodes.
For example, after the second iteration, i.e., second layer, each node contains
information from nodes that are reachable by a path of maximum length of 2
in the graph.

2.2 Position-aware Temporal Graph
The message passing provides a powerful way to incorporate information from
neighboring nodes. We therefore propose to define a temporal graph over a
video and rely on message passing to aggregate and incorporate temporal con-
text. Temporal graph enables us to precisely define the temporal neighborhood
by constructing the topology of the selected graph allowing us to encode known
procedural information. But as the aggregation function is permutation invari-
ant and also does not preserve frame position in the video, all direct neighbors
will equally contribute to the node. This is not a desired behavior for a tem-
poral graph since variation in the temporal distance between frames should
affect how a frame contributes to the context of another frame. One solution
would be to build the graph in way that only nodes with the same temporal
distance are connected. Each frame will only be connected to the next frame
in case of online phase recognition. Increasing temporal context would imply
adding more layers for more massage passing iterations hence expanding the
neighborhood by the number of layers [2]. For example, 60 layers would be
required to construct a neighborhood of 60 seconds over a 1 FPS video. This
results in adding more parameters and limited ability in defining the graph.

To mitigate these issues, we proposed position-aware temporal graph
(PATG). PATG allows encoding frames positions and utilizes them during
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message passing to more accurately use neighbors for updating node embed-
dings. Diagram of a sample PATG is shown in Figure 1. As we are interested
in online phase recognition, a directed graph is used to connect past frames to
the current frame in PATG. Temporal edges are grouped based on their cor-
responding path length. We use a positional encoding function to inject frame
positions during message passing iterations by:

xk+1
i = fk(xk

i , Aggj∈N(i)g
k(xk

i , x
k
j , Pi,j)) (2)

where Pi,j is function to encode frame positions. Similarly to Transformer [16],
we define the positional encoder as:

P 2l
i,j = sin(

i− j

100002l/d
), P 2l+1

i,j = cos(
i− j

100002l/d
) (3)

where l ∈ [0, d/2], d is the positional encoding dimension and i, j denoting
the frame index in the video. The message from vj to vi is computed based
on their embeddings and positions in the video. The function g determines
this relationship, which is learned through backpropagation. We can therefore
define graphs that can connect frames from different parts of a video and rely
on the neural network g to take the temporal context into account and compute
the update message for each node.

Our temporal decoder model architecture consists of three blocks: The
first block is a convolutional layer followed by a nonlinearity ReLU function
for reducing encoder representation to the dimension of the node embeddings
F . The second block has n layers of graph convolutions. We use principal
neighborhood aggregation (PNA) layers as graph convolution [2]. PNA has
demonstrated significant improvement over most of graph convolutions on dif-
ferent benchmark from real-world domains by combining multiple aggregators
and degree-based scalars [2]. The last block is classification head that first
reduces the node dimension to half, which is followed a ReLU and finally a
fully connected layer of the size of the ouput classes.

3 Experimental setup
Dataset. For our experiments, we used the public Cholec80 dataset [15]. This
dataset was generated from 80 laparoscopic videos recorded intra-operatively
during laparoscopic cholecystectomy procedures performed by 13 surgeons.
The videos were captured at 25 FPS and annotated with surgical phases to
provide annotation for seven surgical phases. In average, the phases are from 3
to 10 minutes long. We downsampled the videos to 1 fps. Model performance
was measured using accuracy, precision, recall and F1 scores for online recogni-
tion of the phases, which means future frames were not used for the prediction
of the current frame. We reported the performance of our model on two splits:
the original splits suggested by [15], where the first 40 videos for training and
the rest for test, and five-fold cross validation similarly to [4].
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Fig. 2 Neighborhood distance. The effect of neighborhood distance on model performance.

Training and Model Parameters. We set F , the node embedding
dimension, to 256. The PNA graph convolution layers uses min,max,mean
and STD aggregation functions, and identity, attenuation and amplification
as degree-based scalars. As in [2, 8], we use four towers to improve model gener-
alization and computational complexity. This means that the node embedding
representations are divided into four, forwarded through the graph convolu-
tion layer and then concatenated. We noticed that adding graph convolution
layers up to four layers improves performance, but adding more layers did not
show any improvement. Hence, the number of graph convolutional layers, n,
was set to four. We set the positional encoding dimension, d, to 32. PyTorch
Geometric v1.7.2 [7] was used to implement our model. We used the Adam
optimizer with learning rate of 0.0001 and weight decay of 1e−5. The dropout
for the graph convolution layers is set to 0.2.

4 Results and Discussion
The SEResNet50 encoder was first trained to classify frames into different
phases. The fully connected layer before the classification layer was used to
encode RGB frames into compact 2048 feature representations. These repre-
sentations were fed to temporal models. We first conducted experiments to
determine and assess maximum neighborhood distance on a set of 20 randomly
selected test videos for the first fold, which are provided later in this section.
In Figure 2, the horizontal axis indicates the maximum temporal distance to
connect nodes in the graph and the vertical axis indicates performance in four
metrics. Our model consists of four PNA layers, which means the effective
neighborhood at the last layer is up to four times of the max distance used
to generate the temporal neighborhood. Small temporal neighborhood limits
the receptive field size hence leads to low performance. The best precision,
recall and F1 score were obtained when the temporal graph was defined over a
neighborhood of 64 frames, which means each frame can use the temporal con-
text up to four minutes. We however noticed that enlarging the neighborhoods
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leads to drop in recall and hence F1 score. The maximum temporal distance
of 256 implies that a history of more than half an hour is accessible for each
frame. The small size of the training dataset and relatively short duration of
the videos made it difficult to leverage such a long-term temporal context.
This has resulted in missing short phases that had been reflected by the low
recall. For the rest of the experiments, temporal edges were defined between
each frame and its past 64 frames.

Accuracy Precision Recall F1 Score

EndoNet 81.7 73.7 79.6 —
MTRCNet-CL 89.2 86.9 88.0 87.4

SENet50+LSTM 89.36 82.96 83.01 80.74
SENet50+TCN 88.31 83.05 82.07 80.1
SENet50+PATG 91.36 86.88 84 84.19

Table 1 Performance results on Cholec80’s original 40/40 split. The performance results
of our PATG model and LSTM and TCN models trained on the same encoder are
presented and compared with EndoNet and MTRCNet-CL multitask models.

We followed the original split suggested by [15] and used the last 40 videos
as a test set and the first 40 videos to train our models. These results are
presented in Table 1. To establish strong baselines, TCN- and LSTM-based
models are trained on the same encoder feature as our PATG model. In
SENet50+LSTM, a single-layer LSTM with 512 cells were used and adding
more layer does not lead to any improvement. SENet+TCN had five stages
and ten layers in each stage similar to [3]. Our GNN-based approach achieves
better results compared to the two baseline models. Evan though our PATG
model outperformed the LSTM-based model, it achieved a lower recall com-
pared to MTRCNet-CL that used a similar convolutional network encoder and
LSTM. One should however note that EndoNet and MTRCNet-CL models are
not directly comparable to our models as both models require extra instrument
labels.

Accuracy Precision Recall F1 Score

OperA 91.26±0.64 — — 84.49±0.60
TeCNO 88.56±0.27 81.64±0.41 85.24±1.06 —

PATG 93.77±0.44 89.79±0.79 89.11±0.65 88.22±0.18
Table 2 Performance results on Cholec80. The performance results of state-of-the-art
models are compared with our proposed model. The results are computed over a five-fold
cross validation. Our PATG model is a single-task model while both OperA and TeCNO
are multi-task models that require instrument presence labels in addition to phase labels.
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Fig. 3 Qualitative results. The prediction of our PATG model are plotted against ground
truth for two test videos. Each pair of bar plot belongs to one video, where our prediction
plotted in the first row and the ground truth label in the second row.

Similarly to the experiment setup in [4], we also computed the performance
of our model on a five-fold cross validation setup 1, where for each fold 20
videos were randomly selected as the test set and the other 60 videos were used
to train the model. The performance results of our approach are presented in
Table 2 and compared with state-of-the-art models on the Cholec80 dataset.
The average and standard deviation of our model performance are presented
in Table 2. The average confusion matrix over all folds is shown in Figure 4.
One can notice that confusion occurs frequently between consecutive phases,
which are indications of early and late transitions. The Gallbladder Packaging
phase is an exception that is more frequently confused with other phases. We
believe this is due to the fact the packaged gallbladder will remain in the field
of the view, hence confusing the model. As the gallbladder is dissected in this
phase, it is more often confused with the Gallbladder Dissection phase.

As stated in Section 2, we only used phase annotations to train our model,
while OperA and TeCNO relied on both phase and instrument presence sig-
nals to train the models. Both our model and OperA were evaluated on a
similar setup. Despite using instrument presence signals in OperA, our model
outperformed OperA. This indicates the benefit of modeling temporal context
using our graph-based approach over the transformer-based architecture used
in OperA for the task of surgical phase recognition. Even though OperA can
model long-term temporal context, using such a powerful model would poten-
tially require more data. On the other hand, while our model can take into
account a large temporal receptive field, it allows us to precisely define the
neighborhood based on the problem and dataset size. The comparison with
OperA and the results presented in Figure 2 highlight the superiority of our
model in cases with a limited number of samples.

Positional encoding. PATG incorporates frame positions to more effec-
tively exploit temporal context. No frame position leads to significant drop in
performance. The performance for neighborhoods smaller than 32 decreased
by around 5%. While the performance drop was much higher for larger neigh-
borhoods, for example, for a neighborhood of 512, the F1 score drops by 10%.
This indicates the importance of frame position in order to effectively build and

1The test video are selected from the original Cholec80 test set. The id of the videos in the
random test splits are: 1: [45, 52, 63, 55, 62, 65, 60, 78, 72, 53, 66, 44, 73, 49, 59, 50, 77, 42, 46,
80], 2: [43, 59, 78, 53, 66, 42, 41, 65, 67, 55, 46, 54, 45, 73, 49, 56, 50, 74, 64, 69], 3: [56, 46, 48,
69, 79, 72, 41, 68, 76, 67, 51, 57, 53, 47, 52, 78, 54, 65, 43, 80], 4: [62, 49, 60, 75, 55, 44, 67, 64,
52, 53, 70, 74, 69, 80, 45, 78, 66, 63, 50, 43], 5: [56, 48, 72, 71, 57, 43, 78, 59, 50, 41, 80, 75, 55,
69, 66, 65, 64, 77, 42, 60]
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Fig. 4 Average confusion matrix. Average confusion matrix is computed over all folds. The
majority of misclassifications are happened between consecutive phases.

utilize long-term temporal context. We also noticed that using absolute frames
location in Equation 3 prevents the model from converging. This is potentially
due to patient anatomy and surgeon preference that result in variable video
length.

(a)
(b)
(c)
(d)
(e)
(f)

Fig. 5 Phases of Video 72 in Cholec80: (a) Encoder output (b) LSTM-based model (c)
TCN-based model (d) Prediction using our PATG-based model trained on 40 videos (e) the
same model trained on 60 videos (f) GT label.

Fig. 6 Phase prediction for video 66. The top two barplots are OperA prediction and the
GT label for video 66, courtesy of [4]. The two bottom barplots show our model’s prediction
for the same video along with GT label.

Qualitative results. Figure 5 shows qualitative results for phase predic-
tion on video 72 in Cholec80. Both LSTM and TCN models (Figure 5 (b)
and (c)) utilized the temporal context to reduce alternation between phases.
The PATG models smoothed out the predictions and removed the majority of
incorrect predictions compared to other models. It is worth mentioning that
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training our model on more data resulted in a more robust temporal model,
hence better in coping with noisy frame representations.

Figure 3 depicts the performance of our model on two test videos. For
each video, two barplots are shown: the model prediction (top) and ground
truth label (bottom). The PATG model has successfully used temporal infor-
mation to correctly recognize phases of frames with noisy representations. The
majority of incorrect predictions occurred at phase transitions. In our future
work, we will work on phase transition prediction to improve this aspect of
the model. Qualitative comparison of our model prediction with OperA on a
test video has been shown in Figure 6. OperA is a transformer-based model
that can theoretically utilize all the history. In this video, we have noticed that
OperA have struggled toward the end of the video. This can potentially be due
to either very noisy encoder features or difficulty of using the long-term tem-
poral context. One the other hand, our model, which uses the same SENet50
encoder, has achieved a smoother and more consistent prediction relying on
the fixed defined temporal graph.

5 Conclusion
Surgical workflow recognition is a fundamental block in developing context-
aware supporting systems to assist clinical teams. In this paper, we present a
GNN-based approach for surgical phase recognition on laparoscopic videos. We
propose a position-aware temporal graph (PATG) to precisely define a tem-
poral neighborhood and incorporate frame locations. Encoded frame positions
are used during the message passing process enabling the use of large temporal
neighborhoods. Our model therefore allows us to effectively build and utilize
long-term temporal context for robust surgical phase recognition. Our experi-
ment shows that our PATG model has achieved state-of-the-are results on the
public Cholec80 dataset. To our knowledge this is the first GNN-based model
for surgical phase recognition by constructing temporal graphs over surgical
videos. In future work, we would like to use dynamic graphs to explore temporal
connections between different frames and evolve the graph accordingly.
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