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Abstract
Purpose In obstetric ultrasound (US) scanning, the learner’s ability to mentally build a three-dimensional (3D) map of the
fetus from a two-dimensional (2D) US image represents a major challenge in skill acquisition. We aim to build a US plane
localisation system for 3D visualisation, training, and guidance without integrating additional sensors.
Methods We propose a regression convolutional neural network (CNN) using image features to estimate the six-dimensional
pose of arbitrarily oriented US planes relative to the fetal brain centre. The network was trained on synthetic images acquired
from phantom 3D US volumes and fine-tuned on real scans. Training data was generated by slicing US volumes into imaging
planes in Unity at random coordinates and more densely around the standard transventricular (TV) plane.
Results With phantom data, the median errors are 0.90 mm/1.17◦ and 0.44 mm/1.21◦ for random planes and planes close
to the TV one, respectively. With real data, using a different fetus with the same gestational age (GA), these errors are 11.84
mm/25.17◦. The average inference time is 2.97 ms per plane.
Conclusion The proposed network reliably localises US planes within the fetal brain in phantom data and successfully
generalises pose regression for an unseen fetal brain from a similar GA as in training. Future development will expand the
prediction to volumes of the whole fetus and assess its potential for vision-based, freehand US-assisted navigation when
acquiring standard fetal planes.

Keywords Pose regression · Deep learning · Fetal ultrasound

Introduction

In obstetrics, ultrasound (US) acquisition is a non-invasive,
real-time and cost-effective diagnostic tool for monitoring
mother and fetus throughout gestation [1]. Scientific com-
mittees promote international guidelines for obstetric US
images [2] that must be acquired in particular standard
planes (SPs) for diagnosis (Fig. 1). This allows for reliable
measurements of specific structures and reduces inter- and
intra-sonographer variability. The correct identification of
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SPs is essential in the second-trimester fetal anatomic survey
to investigate the morphological characteristics of the fetus
and detect abnormalities and deviations from the expected
growth patterns. Sonographers may struggle to obtain good
SPs for a variety of reasons, including inexperience, limited
training, time limitations and fetal movement [3,4]. The pri-
mary training challenge faced by all novice sonographers is
not related to knowledge of anatomy or familiarity with the
US machine interface. Rather, the manual navigation of the
probe towards acquiring SP requires the sonographer to build
a three-dimensional (3D)map of the fetus fromdynamic two-
dimensional (2D) sectional views while handling the probe.
The majority of trainees learn on actual patients under the
direct supervision of an expert. AlthoughUS simulators have
been developed in recent years, trainee engagement has been
limited due to competing time priorities [5].

This challenge in clinical training could be addressed with
a US navigation system that guides the sonographer towards
obtaining SPs with reference to fetal anatomy. In this paper,
we propose a deep learning (DL)-based plane localisation
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Fig. 1 Three main standard US
planes to evaluate the
development of brain,
abdominal and femoral
structures. Their acquisition is
subject to intra- and
inter-operator variability

system to estimate the six-dimensional (6D) pose of arbitrar-
ily oriented US planes with respect to the centre of the brain
volume. Our method is purely image-based and, therefore,
does not require tracking sensors. Additionally, it is also not
a classic slice-to-volume registration method, i.e. it does not
require a previously acquired 3D volume of the same sub-
ject being scanned. Instead, we predict the pose relative to a
generalised brain centre, i.e. a stable anatomical brain point
across the different, pre-aligned volumes, where training and
test data belong to different subjects. Our contributions are
as follow:

• To the best of our knowledge, it is the first work
estimating any 6D pose (3D translation and rotation:
tx , ty, tz, αx , αy, αz) of a US plane relative to the fetal
brain centre solely based on 2D scans.

• We formulate 6D pose estimation as deep neural net-
work regression, representing rotationswith a continuous
6D representation [6] since conventional rotation repre-
sentations (Euler angles, quaternions, axis-angle) are not
reliable in this setting.

• We developed a 3D environment using the Unity engine
for automated generation of supervised data to train our
networkusingpre-acquired 3DUSvolumes of both phan-
tom and real fetuses.

• Weprovide a quantitative analysis demonstrating that our
method works reliably on phantom data and generalises
better to unseen real fetus scans if the gestational age
(GA) of the considered fetus is not too far from the one
used for training (23 weeks).

• We release our trained models and the 3D US phantom
volumes with transventricular (TV) SP slice and pose
annotations.

Related work

The pose of a slicing plane with respect to a volume can
be estimated with traditional approaches such as feature-
based and intensity-based slice-to-volume registration or
convolutional neural network (CNN)-based methods. In
traditional approaches, iterative numerical optimisationmax-
imises intensity-based similarity metrics or minimises the
distance between registered point features [7,8]. However,
the cost functions associatedwith thesemetrics are frequently
non-convex and require a reliable initialisation. They are also

computationally costly and, more importantly, require hav-
ing a 3D volume of the subject being scanned beforehand,
which is not suitable for a point-of-care fetal US applica-
tion. With the increased interest in DL, new approaches have
been proposed to address the ill-posed slice-to-volume reg-
istration problem using CNNs [9,10]. 3D pose estimation
methods based on CNN are classifiable into two groups.
The first includes models that predict keypoints used to find
the orientation [11,12]. The second group comprises mod-
els predicting the object pose directly from images [13,14].
Works like [11,15] demonstrated that DL metrics slightly
outperform patch features and local image intensity, which
are typically employed in slice-to-volume registration. Pose
estimation has been primarily approached as a classifica-
tion problem, with the pose space being discretised into bins
[13,14]. Conversely,Mahendran et al. [16] havemodelled the
3D object pose estimation as a regression problem, propos-
ing a deep CNN to estimate rotation matrices with a new
geodesic distance-based loss function. In fetal magnetic res-
onance imaging (MRI) [17] and fetalUS [18], learning-based
approaches have also been proposed. Namburete et al. [18]
formulated the alignment of fetal US as a one-coordinate
position estimation and a 3-class slice plane classification.
They trained their CNN using the negative likelihood loss to
simultaneously predict slice location and brain segmentation.
Hierarchical learning has been proposed for pose estimation
in works such as [11,19]. Here, the six dimensions of the
parameter space were partitioned into three areas to sepa-
rately learn the regression function based on in-plane and
out-of-plane rotations as well as on out-of-plane translations
hierarchically in order to speed up slice-to-volume rigid reg-
istration and improve its capture range. However, the pose
estimation was based on a 2D-projected image representa-
tion of objects, leading to limited rotations. Li et al. [20]
proposed a new approach for standard plane detection in 3D
fetal US using a CNN to regress a rigid transformation iter-
atively comparing different transformation representations.
In [21], Salehi et al. used a CNN to estimate the 3D pose
(rotation and translation) of arbitrarily oriented MRI slices
based on their sectional image representations for registra-
tion purposes. To this aim, they devised a regression problem
based on the angle-axis representation of 3D rotations.

Deep learning regression of 6D pose, and in partic-
ular 3D rotations, is a widely studied topic beyond the
medical field. Different rotation representations have been
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Fig. 2 Examples of
automatically generated
supervised data to train our
network using pre-acquired 3D
US volumes of both phantom
and real fetuses.

used in this context. Works like [22] adopted quater-
nions for regression, which are free from singularities
but have an antipodal problem. This issue is also shown
in [23], where the authors reported a high percentage
of errors between 90◦ and 180◦. Axis-angle representa-
tion has also been used [24] to estimate the 6D pose of
object instances starting from RGB images, depth maps
or scanned point clouds. However, Zhou et al. [6] showed
that any rotation representation in 3D with less than five
dimensions is discontinuous in the real Euclidean space,
making them harder to learn. Empirically, the network
converges but produces large errors for specific rotation
angles. To cope with this limitation, they proposed a
new continuous representation for the n dimensional rota-
tions SO(n), the “6D-loss”, obtained through projection
and normalisation of the first two rows of each rota-
tion matrix and continuous for all elements in SO(3):

L6D =
∥
∥
∥(R̃:,1:2/

∥
∥
∥R̃:,1:2

∥
∥
∥
2
) − (R:,1:2/

∥
∥R:,1:2

∥
∥
2)

∥
∥
∥
2
. Empir-

ical results suggest that continuous representations (5D,
6D and vector-based) outperform discontinuous ones (Euler
angles, quaternions, axis-angle) and are more suited for the
regression task.

Methods

Dataset generation

Phantom fetal dataWe acquired six brain volumes on a 23-
week GA fetus US examination phantom by MediScientific
Ltd., Roecliffe, York, UK1 (whole phantom: 40×29×22 cm;
fetus: 26 cm). The volumes p j , with j = 1, ..., 6 indicating
the acquisition number, were acquired using the VolusonTM

E10 BT18 Women’s Health Ultrasound System2 and the
eM6C 4D 3D US probe,3 both by General Electric (GE)
Healthcare, Chicago, IL, USA. All volumes were processed
to be isotropic with voxel size of 0.5×0.5×0.5 mm and aver-
age size of 249×199×160 mm (coronal×axial×sagittal,
actual size of the acquired volumes). They were registered
using the general registration (BRAIN) module available in

1 US-7a Fetus Ultrasound Examination Phantom (MediScientific Ltd.,
Roecliffe, York, UK)
2 VolusonTM E10 BT18 Women’s Health Ultrasound System (GE
Healthcare, Chicago, IL, USA).
3 eM6C 4D 3D US probe (GE Healthcare, Chicago, IL, USA).

3D Slicer4 with a similarity registration phase (7 degrees of
freedom in total). To generate training data for our models,
we extract image slices with a purpose-built program that
contains the acquired US volumes within the game engine
Unity.5 The slices were generated by applying rotation and
translation to a plane with a starting in the centre of the vol-
ume generated with a uniform random distribution within a
fixed range to avoid slices with poor overlapwith the volume.
The synthetic images obtained by slicing the volume were
saved along with their pose with respect to the volume centre
(fetal brain). This provides an automated way of generat-
ing a high amount of training data with reliable ground truth
labels. An experienced sonographer annotated the position
of the TV SP by directly manipulating a slicing plane within
Unity and chose the translation and angle sampling intervals
to avoid sampling of planes at the edges of the volume con-
taining no information. The nearby planes were generated by
applying small random rotations and translations (uniform
distribution). Specifically, the acquisition interval between
two planes was decreased from 0.1 to 0.001 for translation
(Unity environment, with coordinates normalised between
−1 and 1 so that the pose regression works in a fixed, nor-
malised range, independent of the real brain size in mm) and
from 7.9◦ to 1.9◦ for rotation.We acquired 18047 planes with
random orientation per volume and 725 around the TV SP.
Real fetal data We analysed the generalisation capability
of our method on a dataset of seven real fetal brain US vol-
umes with a GA ranging from 21 to 25 and 39 weeks [25]
(singleton pregnancy with no abnormal findings)6 obtained
from different fetuses (ri , with i = 1, ..., 7). The average
size of the volumes is 249×174×155 mm; the voxel size is
0.5×0.5×0.5 mm. We acquired 22029 images for each vol-
ume (20699 at random coordinates and 1330 around the TV
SP) following the same procedure used for phantom data.

Figure 2 shows an example of supervised phantom and
real data automatically generated with our 3D Unity-based
environment.

Network architecture

As proposed in [21], we used an 18-layer residual CNN
(ResNet-18) [26] as a backbone for feature extraction with
the pre-trained ImageNet weights [27].We modified the

4 3D Slicer
5 Unity Real-Time Development Platform
6 Refer to www.datavers.nl for details.
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Fig. 3 Diagram of the proposed
pose regression network. During
training, it receives US images
sliced from the volume and their
6D pose
θGT = (tx , ty, tz, αx , αy, αz)

relative to the centre of the fetal
brain. It outputs a pose
prediction as
θOut = (t1, t2, t3, r1, ..., r6),
from which a rotation matrix R’
and a translation vector
tPred = (t ′x , t ′y, t ′z) are extracted
for the loss function. This pose
is also represented as
θPred = (t ′x , t ′y, t ′z, α′

x , α
′
y, α

′
z)

for visualisation in Unity. K and
S refer to the kernel size and the
stride

network by re-initialising the fully connected layer based
on the representation’s dimension and adding a regression
head to output the rotation and translation representations
directly. An overview of the proposed framework is pre-
sented in Fig. 3. The network receives the US image I
(128×128) obtained by slicing the volume and its 6D pose
with respect to the centre of the fetal brain US volume
θGT = (tx , ty, tz, αx , αy, αz). We use this information
as the ground truth label for network training and valida-
tion. The CNN learns to predict the 6D pose with respect
to the same point θPred = (t ′x , t ′y, t ′z, α′

x , α
′
y, α

′
z). Specifi-

cally, the network first outputs a vector of nine parameters
θOut = (t1, t2, t3, r1, ..., r6); the first three are used for the
translation and the last six for the rotation. Then, r1, ..., r6
are used internally by our CNN to reconstruct the rotation
matrix R′ in the forward pass. To do so, we employ Gram-
Schmidt process and construct orthonormal basis from two
vectors. If the neural network outputs two vectors �v1 and
�v2, then 3D rotation matrix (R’) can be obtained as fol-
lows: �e1 = �v1|| �v1|| ; �e2 = �u2|| �u2|| , �u2 = �v2 − ( �e1 · �v2) �e1 −→
R′ = ( �e1 �e2 �e1 × �e2).

Loss function details

For both translation and rotation we used as loss the mean
squared error (MSE) between predicted (t′,R′) and ground
truth (t,R) values

LTranslation = 1

N

N
∑

t=1

∥
∥t′ − t

∥
∥
2 , LRotation = 1

N

N
∑

t=1

∥
∥R′ − R

∥
∥
2 (1)

where N denotes the total number of images I within one
training epoch, t′ denotes the predicted translation compo-
nent and t the label. R is the 3×3 rotation matrix obtained
from the ground truth rotation vector r = (rx , ry, rz) andR′

is the 3×3 rotation matrix obtained from the six parameters
r1, ..., r6 as the output of the networks. The total loss func-
tion is then computed as: LTotal = LRotation + λLTranslation

where λ is a hyperparameter to balance between the rotation
loss LRotation and the translation loss LTranslation.

Experiments and results

Our framework is implemented in PyTorch and trained using
a single Tesla® V100-DGXS-32GB GPU of an NVIDIA®
DGX station. The network was trained for 50 epochs with a
batch size of K = 100 using Adam optimiser, with a learn-
ing rate of 0.0001 and exponential decay rates β1 and β2 of
0.9 and 0.999, respectively. We tested three different values
for the hyperparameter λ that weights rotation and transla-
tion (λ = 0.1, 0.01, 0.001). Since λ = 0.01 provides the best
balance between translation and rotation errors (Table 1 in
Supplementary Material), we used this value for the exper-
iments on both phantom and real data. We choose the best
model weights considering MSE obtained on the validation
set (20% of the training set).

Comparison experiments

Regarding the rotation representation, we also tried imple-
menting regression with Euler angles and quaternions, but
they produced large errors for specific rotation angles on
training data. Therefore, we only concentrate on the 6D con-
tinuous representation for rotation.

Our study is divided into two different experiments. As
before, we indicate the volumes considered in the exper-
iments as p j (phantom data) and ri (real data), where j
indicates the acquisition number and i the fetus. Images were
resized to 128×128, preserving the same aspect ratio, and
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Table 1 Translation and rotation errors of our method for test planes
acquired at random coordinates (Test RP), and around TV SP (Test
SP). Norm: Euclidean distance, GE: Geodesic Error. p j and ri refer

to phantom and real volumes, respectively, where i indicates the fetus
considered. For tests on real data, wi indicates the GA

Initial weights Training data Testing data Interval Translation Norm [mm] Rotation GE [deg]

Median Min Max Median Min Max

ImageNet Phantom (p1, p2, p3, p4) Phantom (p5, p6) Test RP 0.90 0.01 53.47 1.17 0.04 20.85

Test SP 0.44 0.02 10.43 1.21 0.13 137.78

Phantom Real (r1 − w23) Real (r2 − w21) Test RP 9.94 0.26 37.58 30.58 0.54 155.3

Real (r3 − w22) Test RP 10.74 0.29 43.03 30.81 0.91 146.1

Real (r4 − w23) Test RP 10.39 0.32 39.08 21.94 0.43 137.22

Real (r5 − w24) Test RP 17.76 0.24 58.44 37.93 1.39 131.3

Real (r6 − w25) Test RP 18.80 0.25 50.59 42.23 1.82 108.2

Real (r7 − w39) Test RP 17.15 1.31 61.39 34.43 0.71 159.64

cropped and centred to avoid visible sharp edges that could
cause overfitting.

Experiment 1We investigated two different scenarios.

1. Training (p1, p2, p3, p4, 75088 images) and testing
(p5, p6, 37544 images) on phantom data; initialisation
with weights from ImageNet;

2. Training and testing on real data; initialisation with
weights from the phantom. The model is trained on one
fetus (r1, 22029 images) with aGAof 23weeks and tested
on six real volumes obtained with a single acquisition of
different fetuses (r2, ..., r7) ranging from a GA of 21 to
39 weeks to understand how well the model generalises
over different shapes and sizes.

The obtained models were used to perform the inference on
the test sets dividing them into two subgroups: (a) random
planes (Test RP) and (b) planes around TV SP (Test SP). To
evaluate the translation results we employed the Euclidean
distance between the two planes, reported in mm. For rota-
tion, we display errors as the geodesic distance to ground
truth in degrees, more suitable for the geometric interpreta-
tion of the distance between two 3D rotations and defined
as ErrorRotation = arccos((R′′

00 + R′′
11 + R′′

22 − 1)/2), where
R′′ = R′−1. The median, maximum and minimum errors
are reported in Table 1. The average inference time is 2.97
ms per plane.

Figure 4 reports the translation and rotation error distri-
butions.

Experiment 2 In the second set of experiments, we per-
formed a sanity test using the manually annotated TV SPs.
The sectional images were saved and fed into the network to
estimate their pose.We plotted back the two planeswithin the
volume into Unity to visually evaluate the distance between
the annotated TV SPs and the predicted ones for both phan-
tom (2.1) and real data (2.2). To understand if the model
can generalise to 2D acquisitions, we fed into the network a

SP acquired on the phantom with a 2D probe (4C-RS Ultra-
sound Probe/Transducer,7 by GE Healthcare, Chicago, IL,
USA) (2.3). The sonographer compared the appearances of
the predicted plane and the externally annotated TV SP, slic-
ing the 3D volume in Unity at the predicted and annotated
coordinates, respectively. He confirmed that they contained
the same anatomical information. The obtained results are
shown in Fig. 5.

Discussion and conclusions

This paper introduces a regression CNN to predict the 6D
pose of arbitrarily oriented planes slicing the fetal brain
US volume without the need for real ground truth data in
real-time or 3D volume scans of the patient beforehand.
Estimating the pose solely relative to the anatomy ensures
independence from the considered reference frame. How-
ever, to achieve this, we need to make implicit assumptions
about fetal anatomy, namely that the location of brain struc-
tures relative to a normalised brain volume is stable across
different fetuses. As observed in the experiments, the GA
has an impact on this assumption. An effective solution may
need to be designed around a specific age range. Fortunately,
fetal examinations are standardised in time (1st, 2nd, 3rd
trimester), enabling fine-tuning to these specific intervals.
A second assumption is that the scanned fetus is healthy,
and therefore brain anomalies would present a challenge. On
the other hand, our proposed model would find its best per-
formance in clinical training with phantom simulation. In
this case, our method provides accurate pose estimations, as
demonstrated by our phantom experiments, and may enable
assisted 3D navigation and skills assessment when using
physical phantoms. Although errors are still high on real

7 4C-RS Ultrasound Probe/Transducer (GE Healthcare, Chicago, IL,
USA)
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Fig. 4 Left: Translation and rotation error distributions in phantom(1.1)
and real US data (1.2). Test RP refers to test planes acquired at random
coordinates, whereas Test SP refers to test planes acquired around the
annotated TV SP. Right: a shows the central slice of fetal brain volumes

used for training (blue labels) and testing (yellow labels) in Experiment
1.2. bRP and SP comparison for a GA of 23 weeks, i.e. the best aligned
volume

Fig. 5 TV SP prediction performed on phantom (2.1) and real (2.2)
US data. The green and orange boxes indicate the ground truth and
the prediction, respectively. The ground truth pose of the TV SP was
manually annotated by an experienced sonographer within the Unity

environment. In 2.3, a is the TV SP acquired on the phantom with a
2D probe, b is where the predicted plane intersects the phantom 3D US
volume (scanned with 3D US probe), and c is the SP annotation in the
3D US volume, which is similar to the prediction

data, better results could be achieved either by extending
the training dataset or using our method to get an initial
rough alignment and combine it with approaches for posi-
tion refinement. Future work could extend the same concept
to other anatomical regions such as the abdomen, expand the
network input to video clips, and use the temporal context
for increased robustness.
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