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Abstract
Purpose: Intraoperative diffusion MRI could provide a means of visualising brain fibre tracts near a neurosurgical target
after preoperative images have been invalidated by brain shift. We propose an atlas-based intraoperative tract segmentation
method, as the standard preoperative method, streamline tractography, is unsuitable for intraoperative implementation.
Methods: A tract-specific voxel-wise fibre orientation atlas is constructed from healthy training data. After registration with
a target image, a radial tumour deformation model is applied to the orientation atlas to account for displacement caused by
lesions. The final tract map is obtained from the inner product of the atlas and target image fibre orientation data derived from
intraoperative diffusion MRI.
Results: The simple tumour model takes only seconds to effectively deform the atlas into alignment with the target image.
With minimal processing time and operator effort, maps of surgically relevant tracts can be achieved that are visually and
qualitatively comparable with results obtained from streamline tractography.
Conclusion: Preliminary results demonstrate feasibility of intraoperative streamline-free tract segmentation in challenging
neurosurgical cases. Demonstrated results in a small number of representative sample subjects are realistic despite the sim-
plicity of the tumour deformation model employed. Following this proof of concept, future studies will focus on achieving
robustness in a wide range of tumour types and clinical scenarios, as well as quantitative validation of segmentations.
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Introduction

Neurosurgery carries risks to healthy brain structures, includ-
ing neuron fibre bundles called white matter tracts, injury
to which can cause disruption to such important functions
as movement, vision and speech. The spatial relationship
between neurosurgical targets and adjacent white matter
tracts can be determined preoperatively from diffusion mag-
netic resonance imaging (dMRI). However, the information
in preoperative images becomes inaccurate as the spatial rela-
tionships change over the course of surgery (brain shift).
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Intraoperative dMRI offers a means for imaging fibre
tracts after brain shift has invalidated preoperative imaging.
However, the unique challenges of intraoperative imaging,
which include strict time constraints on image acquisition
and post-processing , and on the availability of specialist
operators and computing equipment, mean that standard pre-
operative image processing techniques do not translate easily
to the intraoperative environment.

The current clinical standard for reconstructing tracts from
dMRI data preoperatively is streamline tractography [1,2],
in which fibre tracking algorithms generate virtual fibres
from fibre orientations modelled from dMRI data. However,
there remains a notable gap between advanced tractogra-
phy and tract segmentation methods widely used in dMRI
research and those methods that remain commonplace in
clinical practice, despite clear evidence of the accuracy and
reliability drawbacks characteristic of the latter more out-
dated tractography techniques [3]. A major factor behind
this adoption delay is likely convenience: implementation of
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streamline tractography can be time-consuming, and obtain-
ing accurate results in the presence of tumours is difficult [4].
Generating reconstructions of specific tracts requires (usu-
ally manual) placement of anatomical regions of interest, as
well as manual post-processing to remove spurious stream-
lines. In addition, tractography has poor reproducibility, with
results depending on numerous factors [5]. All considered, it
is perhaps unsurprising that there is hesitancy within the neu-
rosurgical community to adopt intraoperative tractography
[6], even as interest in intraoperative MRI [7,8] and trac-
tography for surgical planning and navigation [9,10] grows.
Currently intraoperative streamline tractography is mostly
limited to the often outdated tools available in commercial
navigation software [3]. For example, the iPlan FibreTrack-
ing module in Brainlab surgical navigation tools (Brainlab,
Feldkirchen, Germany) uses FACT (fibre assignment by con-
tinuous tracking), a deterministic, diffusion tensor derived
tracking algorithm first proposed in 1998 [11,12]. That is
not to say it is appropriate to simply update the tractogra-
phy techniques implemented in commercial tools. In general,
the ill-posed nature of tractography results in a trade-off
between sensitivity and specificity, with those methods com-
mon in clinical use generally exhibiting low spatial coverage
of tracts (low sensitivity), while state-of-the-art tractography
is afflicted by high numbers of spurious streamlines (low
specificity) [1], which could unhelpfully obscure intraoper-
ative navigation. Instead, there is a need for alternative tract
segmentation methods that do not directly utilise streamline
tractography. For example, TractSeg, a deep neural network
model for direct tract segmentation, has been proposed for
use in neurosurgical patients [13]. TractSeg does not incor-
porate any explicit handling of lesion mass-effects, leading
to partially incomplete segmentations in some cases. We
propose an atlas-based method, “tractfinder”, with patient-
specific lesion deformation modelling.

One difficulty of using atlas-based segmentation methods
in clinical subjects is that of anatomical non-correspondence
between subject and template images caused by space-
occupying lesions. Deformable registration alone is often
insufficient for handling this mismatch [14], and so using
tumour growth models to simulate the deformation in the
atlas prior to registration is the commonly preferred approach
[15,16]. Numerous previously proposed tumour deformation
models aim to achieve highly accurate modelling of tumour
growth dynamics and the effects on surrounding tissues,
by taking into account elastic tissue properties and micro-
scopic tumour growth modelling. The resulting algorithms
are mathematically complex [14], require optimisation of
tumour parameters through problem inversion or by other
means [16–19] and take anywhere between 1 and 36 hours to
run [18,20–23], evenonhigh-performance computing setups.

Given the time constraints of intraoperative imaging and
the practical constraints of the computing capacity which

can reasonably be assumed to be available in an operating
room, our aim is to achieve an estimate of tract displacement
with low computational complexity. The first component of
tractfinder, the tract orientation atlas, provides a degree of
spatial tolerance that alleviates the need for voxel-perfect
registration and deformation, allowing the implementation
of a minimal deformation algorithm. We then derive a tract
segmentation from the overlap between the deformed atlas
and fibre orientation information in the target image.

The novel contributions of this work are explicit handling
of large-scale deformations and an automated pipeline that
can produce results within 15 minutes. The pipeline can be
run fully automatically with no minimal to no user input,
depending on the particularities of an individual case (such
as lesion mass effect and extent of resection). Tractfinder has
been developed specifically for intraoperative imaging, but
is equally applicable to any diffusion MRI data.

Methods

The tractfinder pipeline consists of three main components.
The first component, the tract atlas, acts as a prior on a
tract’s spatial location and orientation. It incorporates known
knowledge about tracts in a way similar to the use of regions
of interest in tractography. Next, tumour deformation mod-
elling of the atlas corrects for the displacement of tracts
by space-occupying lesions. Minimal adjustment to precom-
puted deformations can account for intraoperative brain shift.
Finally, the deformed tract atlas and target dMRI fibre ori-
entation data are combined to compute a likelihood map for
the tract.

Since the focus of this communication is on tumour
deformation modelling, the other components will only be
briefly summarised for completeness. Throughout this sec-
tion, wherever there is talk of an orientation distribution, all
such distributions are represented in spherical harmonic (SH)
basis [24]. In this framework, a distribution is parameterised
by its SH coefficients up to a maximum order set to lmax = 8
unless otherwise specified.

Tract orientation atlas

A separate atlas is created for each tract of interest to cap-
ture its typical orientation and location. To date, bilateral
atlases have been constructed for the optic radiation and cor-
ticospinal tract. First, the tract is reconstructed in each of a
series of healthy training dMRI datasets (n=16) [25] using
multi-shell multi-tissue constrained spherical deconvolution
[26–28] and probabilistic streamline tractography [29,30]
and a consistent ROI-based reconstruction protocol. After
manual filtering of biologically implausible streamlines, the
reconstructions are transformed to MNI space [31].
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Next, tract orientation distribution (TOD) mapping [32]
is used to calculate the distribution of streamline orienta-
tions within each voxel. The TOD map is normalised to unit
integral on the sphere in order to remove streamline density
information. Finally, the mean over all training normalised
TOD maps is computed.

The resulting tract atlas is an average map of the tract
over all training subjects, which contains both a spatial and
orientational components. For use in unseen target subjects,
the tract atlas is linearly registered to the target image for
subsequent calculations.

Tumour deformationmodelling

The tract orientation atlas represents the expected orientation
and location of the tract for a typical healthy subject. In order
to correct for displacement of whitematter tracts due to space
occupying lesions, a simple radial tumour expansion model
is employed.

The model has been adapted from the one described
by Nowinski and Belov [33]. The model inputs are the
segmentations of the tumour and brain volumes. Tumour seg-
mentations were drawn manually for this study, while brain
masks are readily computed by available MRI analysis soft-
ware [28,30,34]. We define the direction ê, which is the unit
vector along the line connecting a point P(x, y, z) to the
tumour centre of mass, S. Along ê we also define Dp as the

distance ‖−→SP‖, Db as the distance from S to the brain surface
and Dt as the distance from S to the tumour surface (Fig. 1).

Then, for a point in the original image P = (x, y, z) the
transformed location in the deformed image P ′ = (x ′, y′, z′)
is

P ′ = f (P) = P + êkDts. (1)

An exponentially decaying function is used to model the
displacement of each voxel (Fig. 2). This choice was made in
contrast to the linear relationship used in [33] as it provides
a better approximation to typically observed tumour dis-
placement patterns, while remaining an easily computable,
closed-form and invertible function. The amount of displace-
ment depends exponentially on the relative distance to the

Fig. 1 Schematic of variables in radial tumour expansion model

tumour and brain surfaces via the following relationship:

k(P) = (1 − c)e
−λ

Dp
Db + c, (2)

where the normalisation constant c = e−λ

e−λ−1
ensures that

k = 1 when DP = 0 and k = 0 when Dp = Db. The appro-
priate value for the decay parameter λ will depend on the
specific lesion being modelled. For example, smaller lesions
(20-30mm diameter) typically displace tissue only in their
immediate surroundings, with distant tissue remaining vir-
tually unmoved. In such cases, a higher value of λ (≥ 3),
indicating stronger decay of deformation, would be appro-
priate (Fig. 1).

Equations (1) and (2) describe the deformation field in
forward warp convention. To deform an image using reverse
warp (“pull-back”) convention, the inverse mapping P ′ =
f −1(P) is needed, which is obtained by solving equation (1)
for P:

P = P ′ − ê

(
Dtc − Db

λ
W0

(
−λDt (1 − c)e−λ(D′

p−Dt c)/Db

Db

))
,

(3)

whereW0(y) is the principal branch of the LambertW func-
tion, defined as the inverse function of y(x) = xex for
x, y ∈ R.

If the lesion is not invading the surrounding tissue but
instead fully displacing it (non-infiltrative), then under the
simplified assumption that no original, healthy tissue is
destroyed, λ should be set to a value that ensures that every
point P within the lesion boundary is displaced to a new posi-
tion P ′ that is strictly outside the boundary. In other words,

k(P) = (1 − c)e
−λ

DP
Db + c ≥ 1 − DP

Dt
(4)

must hold for all P .
Given that the gradient of k is strictly decreasing and

g(DP) = 1 − DP
Dt

is linear, it is sufficient to set

d

dP

∣∣∣∣
DP=0

k(DP) = d

dP

∣∣∣∣
DP=0

g(DP). (5)

Differentiating both functions at DP = 0 and solving for
λ, we have λmax = Db

Dt (1−c) . Thus, for strictly non-infiltrating
lesions, we set λ ≤ λmax to satisfy equation (4), where λmax

is used as the default value if none is specified. Note that
λmax varies throughout the brain, as it depends on the relative
distances to brain and tumour surfaces for each specific P .

The tumour deformationmodel is implemented in Python,
and full execution takes on average 1 min for a 208 x 256 x
256 voxel image. If lookup tables for Dt and Db are precom-
puted and saved, then subsequent executions of the model
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Original image Deformed image Difference Displacement field

Fig. 2 Demonstration of tumour deformation model on standard test
images, using different values of λ. Larger values of λ result in more
localised deformation fields, while normalisation ensures deformation

is always zero at the brain boundary (red ellipse). Yellow circle = sim-
ulated tumour boundary. Top: Shepp–Logan phantom, λ = 2. Middle:
San Diego aerial test image, λ = 6

(e.g. with different values for λ and s, as appropriate for a
given tumour) take less than 10 seconds, as long as the tumour
and brain segmentations remain unchanged.

Prior and data combination

The final step, after registering and deforming the orientation
atlas to approximatelymatch the anatomyof the target image,
is to compare the expectation represented in the atlas with
the observed dMRI data of the target image. Our objective is
to obtain a measure per voxel of how closely the predicted
tract orientation distribution overlaps with the observed fibre
orientation distribution (FOD), which is modelled from the

target dMRI data using multi-shell multi-tissue constrained
spherical deconvolution (CSD) [26,27] (Fig. 3).

This can be achieved by taking the inner product of the
two functions, i.e. multiplying them and integrating the prod-
uct over all spherical angles. The FOD and TOD atlas are
both represented by their spherical harmonic (SH) distribu-
tion functions as follows:

F(θ, φ) =
lmax∑
l=0

l∑
m=−l

fl,mYl,m(θ, φ) =
∑
j

f j Y j (θ, φ), (6)

where Yl,m is the modified SH basis described in [24]. The
spherical integral of the product of two spherical harmonic
basis functions is

∫ π

0

∫ 2π
0 Yl1,m1(θ, φ)Yl2,m2(θ, φ)sin(θ)dθ

Fig. 3 Illustration of atlas and FOD combination, with close-up of a
crossing region between the corticospinal tract (CST) and association
fibres of a separate tract. The crossing fibres are visible as green FOD
lobes, while branching CST fibres are represented by the purple and

red lobes. Only directions corresponding to CST fibres are present in
the TOD atlas. The multiplication of the two distributions results in
suppression of non-CST signal. Integrating the multiplied distributions
gives the final scalar map (not shown)
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dφ = δm1,m2δl1,l2 . Therefore, for two functions F(θ, φ) and
G(θ, φ) the integral of their product can be expressed as:

∫ π

0

∫ 2π

0
F(θ, φ)G(θ, φ)sin(θ)dθdφ

=
∫ π

0

∫ 2π

0

⎛
⎝∑

j

f j Y j (θ, φ)

⎞
⎠ (∑

k

gkYk(θ, φ)

)

× sin(θ)dθdφ

=
∑
j,k

f j gkδ jk .

(7)

Thus, for two distributions represented by a vector con-
taining their spherical harmonic coefficients, the integrated
product can be obtained by taking the inner product of the
two coefficient vectors.

Application to intraoperative dMRI

The methodology described above was initially developed
and tested in preoperative tumour images.However, the target
application is in intraoperative imaging. The main differ-
ence therein is the need to account for brain shift, which is
unpredictable: differing effects stem from drainage of fluid,
pressure changes, tumour debulking and gravitational sag.
Nevertheless, we aim to achieve intraoperative tract segmen-
tation while avoiding the need to perform additional tumour
and/or resection cavity segmentation intraoperatively.

As the atlas is designed to be spatially inclusive, with the
inner product acting to correct small spatial inaccuracies, it
is possible in some cases where brain shift is minimal to
reuse the preoperative tumour deformation field. In cases of
significant tumour debulking, the deformation field can be
recomputed from the preoperative tumour segmentation by
adjusting the value of s to simulate a reduction in tumour
volume.

This scenario is demonstrated in Fig. 4, showing the resec-
tion of a large temporal epidermoid cyst. There is significant
reduction in cyst volume and the adjacent corticospinal tract
has shifted accordingly; however, by reusing the preopera-
tive lesion segmentation and setting s = 0.8, the resulting
deformation field is able to capture the rough location of the
shifted tract. By only adjusting the value of s and reusing
preoperatively computed values of Dt and Db, we can avoid
time and resource-intensive intraoperative lesion segmenta-
tion, brain shift modelling or nonlinear registration.

Results and discussion

Due to the lack of ground truth information for white mat-
ter tract segmentation in in vivo dMRI images, especially in

neurosurgical cases, a quantitative validation of this method
is not currently possible. However, comparison with the cur-
rent clinical standard, streamline tractography, illustrates the
effectiveness of tractfinder. Targeted probabilistic streamline
tractography reconstructions were produced by an experi-
enced operator utilising ROI placement strategies routinely
utilised in clinical practice at our institution. The clinical
reliability and biological accuracy of tractography is diffi-
cult to determine in vivo. While some consider the “gold
standard” to be validation against intraoperative direct elec-
trical stimulation and post-surgical outcomes [3], which is
unavailable for the presented data, even this can provide
only incomplete informationon spatial accuracy.Therefore, a
quantitative comparison between the proposed methodology
and streamline tractography is not available at present, with
comprehensive validation remaining the subject of future
investigations. Figure 5 shows results for four different exam-
ple subjects (three paediatric and one adult) with space
occupying tumours. These initial results serve to demonstrate
the feasibility of the proposed method (demonstrated in the
corticospinal tract in all four subjects and additionally the
optic radiation in subject 2) in a range of complex clinical
cases.

The tumour deformation model successfully captures
large-scale tract displacements in seconds, where much
longer timescales (several minutes to hours) are typical for
more complex tumour growth modelling algorithms and
nonlinear registration. The short computational time further
makes it trivial to recompute the deformation with small
adjustments if necessary. The model presents a simplified
prediction of tumour deformation: No distinctions are made
between the highly deformable ventricles and stiffer brain tis-
sues, and the tumour is “grown” isotropically from a single
point outward with no regard for the surrounding topol-
ogy (except for the brain boundary) or peri-tumoural tissue
effects. Nevertheless, the objective of the deformation step,
which is to bring the tract orientation atlas into approx-
imate alignment with the actual target tract, is achieved
despite these simplifications. Improvement is needed in cases
involving infiltrative tumours, where tracts are not entirely
displaced and tumour cells mix with surrounding functional
structures, as the current model only supports single tumours
with defined boundaries.Modelling this scenario will require
a modified deformation model, using a different expression
for k(P).

The inner product between the orientation atlas and target
FOD image provides an intuitive map of tract location and is
computationally straightforward (Figs. 3 and 5). Successful
results have been obtained in clinical quality, single-shelled
diffusion MRI datasets (see Appendix 1). However, there
remains the need to more thoroughly explore the effects
of different acquisition protocols, including fewer diffusion
encoding directions and lower b-values, on segmentation
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Fig. 4 Example results in intraoperative image using scaled preoperative tumour segmentation. Blue outline: Tumour segmentation. Green outline:
effective tumour boundary with s = 0.8 used for intraoperative segmentation

quality. So far, there has been limited validation of apply-
ing tractfinder to intraoperative cases, and this will be the
subject of future research. One example of such a case is
shown in Fig. 4. Using a lesion shrinkage factor of s = 0.8
is successful at creating a deformation field that corresponds
with the intraoperative anatomy, and the resulting map of the
CST captures the tract’s course at the edge of the lesion and
resection cavity.

If implemented clinically, intraoperative processing steps
would be limited to minimal preprocessing including de-
noising [30,35,36] and bias field correction [30,37], registra-
tion to preoperative data [38], followed by FOD modelling
[27,39], adjustments to tumour deformationmodelling if nec-
essary and inner product computation. Other preprocessing
steps which are routine in preoperative and research imaging
contexts, such as correction for eddy current and geometric
distortion artefacts, have been omitted due to long processing
times making them impractical for intraoperative use. Future
research should investigate the implications of omitting these
corrections and possible more lightweight implementations.
Total processing time for the above steps should not exceed
15 minutes, and could be completed in parallel with the non-
diffusion iMRI acquisition protocol (if the site-specific setup

allows parallel acquisition and data processing), which can
take up to 50 minutes. Operator input and time is currently
required preoperatively for manual tumour segmentation,
although this step could feasibly be automated given the
extensive interest and research into automatic brain tumour
segmentation [40,41]. Additionally, all intraoperative pro-
cessing steps can be completed automatically using default
values. The process is no longer fully automatic if manual
adjustments to λ and s are necessary; however, this nev-
ertheless amounts to far less operator input than advanced
streamline tractography as described in the introduction. A
final critical practical aspect of intraoperative implemen-
tation will be the integration of segmentation results with
neuronavigation tools for display during surgery, including
the appropriate data conversions. Tools to enable such inter-
facing have beendevelopedbyothers [42,43] and could likely
form part of the full clinical tractfinder implementation.

In conclusion, awhitemattermappingmethod is presented
that is shown to produce plausible tract reconstructions in
caseswith space occupying lesions, using an atlas in conjunc-
tion with tumour deformation modelling. Producing results
requiring minimal user input and on intraoperatively feasible
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Fig. 5 Sample results in 4 different clinical subjects (1: unknown, 2:
11y F, 3: 5y M, 4: 30y F). First column: linearly registered tract atlas
(spatial component only). Second column: atlas after tumour deforma-
tion.Third column:Final tractmap. Fourth column:Trackdensity image
from streamline tractography, where intensity corresponds to stream-
line count per (2.5mm)3 voxel (thresholded at 10 streamlines). In each

subject j , the value of λ varies spatially and was set automatically to
min{λ j , λmax } according to equation (4), with λ j = 8 everywhere
except for subject 2, optic radiation, where λ j = 2. In subjects 1-3
s = 1, in subject 4 s = 0.8 (see also Figure 4). Key: CST = corti-
cospinal tract, OR = optic radiation

timescales, the method thus has the potential to bring effec-
tive white matter mapping into the intraoperative domain.
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Imaging data parameters

The results displayed in Fig. 5 are derived from diffusion
MRI datasets with the following parameters:

Subject Shell b-value(s) Number of directions

1 1000, 2200 60, 60
2 1000 60
3 1000 60
4 1000 36
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