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Abstract
Purpose Medical imaging data of lung cancer in different stages contain a large amount of time information related to its
evolution (emergence, development, or extinction). We try to explore the evolution process of lung images in time dimension
to improve the prediction of lung cancer survival by using longitudinal CT images and clinical data jointly.
Methods In this paper, we propose an innovative multi-branch spatiotemporal residual network (MS-ResNet) for disease-
specific survival (DSS) prediction by integrating the longitudinal computed tomography (CT) images at different times
and clinical data. Specifically, we first extract the deep features from the multi-period CT images by an improved residual
network. Then, the feature selection algorithm is used to select the most relevant feature subset from the clinical data. Finally,
we integrate the deep features and feature subsets to take full advantage of the complementarity between the two types of
data to generate the final prediction results.
Results The experimental results demonstrate that ourMS-ResNet model is superior to other methods, achieving a promising
86.78% accuracy in the classification of short-survivor, med-survivor, and long-survivor.
Conclusion In computer-aided prognostic analysis of cancer, the time dimension features of the course of disease and the
integration of patient clinical data and CT data can effectively improve the prediction accuracy.

Keywords Disease-specific survival prediction · Deep learning · Longitudinal CT images · Clinical data · Attention
mechanism

Introduction

Nowadays, cancer is one of the major diseases affecting
human health, especially lung cancer, which is currently the
leading cause of cancer death [1–4]. According to cell mor-
phology, lung cancer is divided into small cell lung cancer and
non-small cell lung cancer(NSCLC), the latter accounting for
about 80 to 90%. NSCLC can be divided into adenocarci-
noma, squamous cell carcinoma, and large cell according to
different tissue subtypes [5], lung cancer, most of which are
squamous cell carcinoma and adenocarcinoma. Therefore,
further exploration of NSCLC predictive analysis is also of
great clinical significance. Survival prediction has become a
research hotspot of cancer research. An individualized and
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accurate survival prediction model is important for progno-
sis assessment, treatment plan selection, and clinical decision
support for lung cancer patients [6,7]. Disease-specific sur-
vival (DSS) prediction is used as a common prognostic
assessment tool. Compared to other types of survival (e.g.,
overall survival), the improvement in DSS is more respon-
sive to the clinical benefit of a specific disease. The greatest
significance of accurate DSS survival prediction lies in that it
can lead to guideline coordinate treatments which optimizes
survival and effectively avoid excessive treatment and waste
of medical resources [8].

At present, there are three major problems in computer
aided diagnosis (CAD) and survival prediction of lung can-
cer. The first problem is that conventional methods for
predicting the survival of lung cancer patients are mainly
based on tumor stage [9]. However, in clinical practice, even
if patients in the same stage have the same treatment plan,
the difference in patients’ response to treatment and survival
remains substantial [10]. Therefore, there is an urgent clinical
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Fig. 1 CT imaging data of the
same pulmonary nodules in two
patients at five different stages

need to incorporate further features tomore accurately assess
the prognosis and thus rationalize the treatment options. And
CAD measures are necessary to systematically extract deep
features from digital medical images to provide decision sup-
port for cancer prognosis [11,12].

The second problem is that most of the existing CAD
methods for lung lesions are studied for images of a single
period, especially for the automatic identification and diag-
nosis of images of the middle and late stages of lung cancer
[13–15]. The medical imaging data of lung cancer lesions in
different periods are shown in Fig. 1, which contains a large
amount of time-related evolutionary information (such as the
formation and growth of tumor, including its diameter, shape,
gray distribution, texture, and calcification). Exploring the
evolution of serial images of lung lesions in the temporal
dimension and studying themechanismof all-stage evolution
of lung cancer images can play a key guiding role in early
lung cancer screening and identification [16,17]. However,
existing methods ignore the impact of the progressive evolu-
tion of lesion characteristics on survival and do not consider
the correlation between multi-period computed tomography
(CT) images.

The third problem is that multiple types of medical data
are not yet integrated or insufficiently integrated. Multi-
modal fusion techniques are bringing profound changes
to prediction research in computer vision, communication,
biomedicine, and other related fields and are a research trend
in many research areas. Many computational models for pre-
dicting cancer survival have been proposed, but most of them
use only imaging data to generate prediction models, and
clinical information of patients (e.g., age, smoking history,
family history, etc.) is not considered [8,18,19]. To address
the above problems, we propose a DSS prediction model
for lung cancer based on multi-period CT images and clini-
cal information. The main contributions of this paper can be
summarized as the following three points:

• A novel multi-branch network based on residual con-
volutional neural network model is proposed for the
prediction of lung cancer disease-specific survival.

• The designed spatiotemporal attention mechanism can
assign appropriate weights to features in different peri-
ods.

• The deep features from the deep network combine with
the key clinical attributes of the patients for training,
which can effectively improve the accuracy of survival
prediction.

Methodology

In this study, we effectively exploit the correlations among
multi-period CT images as well as integrate some key clini-
cal attributes for improving the DSS prediction performance.
The proposed framework is illustrated in Fig. 2. Our work
mainly includes the following parts: data preprocessing, fea-
ture selection, feature extraction, feature fusion, and survival
prediction.

Data preprocessing

The data preprocessing section includes preprocessing of
both the CT images and clinical data.

In this study, we apply rotation and flip to augment our
training set. These methods facilitate the ability of the pro-
posedmodel to view the same image fromdifferent geometric
perspectives. Inspired by several recent SSL studies [20,21],
we chose the angle setting 90◦ and 180◦ to rotate the train-
ing data. The preprocessing of clinical raw data includes the
following three aspects: clarifying the distribution status of
the data, data cleaning, and data transformation. Specifically,
first use SPSS software to analyze the distribution of the orig-
inal data to understand the mean, median, missing number,
etc., of each variable, which can effectively understand its
central tendency and degree of dispersion, and judgewhether
there are outliers. Data cleaning refers to discovering and cor-
recting identifiable errors in data, including checking data
consistency, processing invalid, missing, and duplicate val-
ues. For attributes that aremissingmore than 50%of the data,
we will delete them directly. Data transformation means that
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Fig. 2 The architecture of the proposed model: a The experimental
dataset uses information on 198 patients from the NLST dataset, and
each patient data includes follow-up CT image data and clinical record
data for 3 periods. b The core part of the proposed model consists of a
3-branch residual network for extracting deep features of CT images,

a longitudinal self-attention mechanism (LSM) module for capturing
time-related evolutionary information, and an integration module for
integrating deep features and clinical attributes. c The model survival
prediction results will be classified into three categories: short survivor,
medium survivor, and long survivor

Table 1 The seven clinical information variables most related to DSS are screened out and their descriptions

Variable Label Format text

Can_type Cancer cell type 0=“non-small cell lung cancer” 1=“small cell lung cancer”

De_stag Lung cancer Stage 0=“Stage IA” 1=“Stage IB” 2=“Stage IIA” 3=“Stage IIB” 4=“Stage
IIIA” 5=“Stage IIIB” 6=“Stage IV” 7=“other”

Can_scr Result of the screen associated with the first confirmed
lung cancer diagnosis

0=“No Cancer” 1=“Positive Screen” 2=“Negative Screen” 3=“Missed
Screen” 4=“Post Screening”

Age Age at randomization In years; whole number.

Treatlc Status of treatment data 1=“Confirmed treatment” 0=“Confirmed no treatment”

Locmed Cancer in Mediastinum 0=“No”1=“Yes”

Educat Level of education completed 1=“8th grade or less” 2=“9th-11th grade” 3=“High school
graduate/GED” 4=Associate degree/ some college 5=“Other”

the original data cannot meet the requirements of all aspects
of statistical analysis. In order to facilitate the training of
machine learning models, it is necessary to convert the cat-
egorized attribute values into numerical values. The unified
representation of the clinical variables used in the experiment
is listed in Table 1.

Feature selection

A total of 140 attributes are used to describe participants in
the downloaded clinical data, including basic information,
smoking and alcohol use, disease diagnosis, family genetic
history, follow-up records, etc. Many of these attributes are
redundant or irrelevant to survival prediction. With the grad-

ual application of artificial intelligence technology inmedical
image and big data processing, feature selection algorithm is
also used by more and more researchers for clinical infor-
mation processing [22–24]. To improve the performance and
reduce overfitting, we use the feature selection method to
select a feature subset with the greatest predictive power.
First, the filter method is used to calculate the correlation
between each clinical attribute andDSS label by the ANOVA
method [25]. Each clinical feature is scored, that is, each
dimension of clinical features is given a weight, which rep-
resents the importance of the feature. Then the top K clinical
attributes with the highest feature scores are selected for fea-
ture fusion in the later stage.
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Fig. 3 Residual network architecture is adopted in the feature extrac-
tor. The network consists of three residual blocks. Each block consists
of three convolution layers, two batch normalization layers, two ReLU
layers, and one element addition operation unit, followed by a max-

imum pooling layer. Because of the shortcut connection, the shallow
features jump to the deep layer, and the deep network can get a result
that is no worse than the shallow network

Feature extraction

Feature extraction is the most important step of the sur-
vival prediction task. Recently, deep learning methods have
been widely applied to feature extraction in various image
classification tasks. However, for medical image processing
tasks, the limited availability of images makes it very diffi-
cult to fully train a novel convolutional neural network (CNN)
model from scratch.

Several studies have demonstrated that a pre-trained con-
volutional neural network model can be used as a feature
extractor for any image [26]. Besides, Li et al. reported that
the residual convolutional neural network (ResNet) has a
better diagnosis and classification performance than other
models, and it has a broad application prospect in the classifi-
cation ofCT images [27]. Because of the shortcut connection,
the shallow features jump to the deep layer, and the deep
network can get a result that is no worse than the shallow net-
work. The shallow features are added to the deep features,
which ensures that the deep network has the same perfor-
mance as the shallow one, even if the features obtained from
the intermediate operations do not have any effect. Up to now,
ResNet has been widely used for its simplicity and practical-
ity [28,29]. Therefore, we employ ResNet as the backbone
model to extract deep features in our work.

To effectively exploit the correlations amongmulti-period
CT images, as well as preserve specific features for each
period, we propose a multi-branch spatiotemporal residual
network (MS-ResNet).As shown inFig. 2b, specifically,MS-
ResNet adopts three complementary branches to simulate the
radiologist’s level of attention and learn multi-period deep
characteristics from different periods. The structure of our
multi-branch CNN is shown in Fig. 3, where subnetworks
in all branches have the same structure but with different
parameters. A 64×64 pixels tumor image is input to each
branch of the model, and the feature extraction network is

mainly composed of three residual blocks. Each block con-
sists of three convolution layers, two batch normalization
layers, two ReLU layers, and one element addition operation
unit, followed by a maximum pooling layer.

Spatiotemporal attentionmodule

The attention mechanism in deep learning is essentially sim-
ilar to the human selective visual attention mechanism, and
the core goal is also to select the information that is more
critical to the current task goal from a large amount of infor-
mation [30].

Images from different periods contain different character-
istics. To discover the distinctions and relationships between
tumors from each period, an attention mechanism is needed
to focus on the salient features of tumors. Self-attention
is an effective mechanism to simulate longitudinal spa-
tiotemporal dependence [31]. Motivated by the mechanism,
we design a longitudinal self-attention mechanism (LSM),
which can capture the rich global spatial–temporal relation-
ships between pixels in the whole space-time, so as to obtain
more discriminative features. The details of the LSM are
shown in Fig. 4.

As can be seen from Z , the features at each position of the
output tensor fuse the features at all positions with the orig-
inal features. Therefore, it has a global contextual view and
selectively aggregates contexts according to the spatiotempo-
ral attention map. Similar semantic features achieve mutual
benefit, thus improving intraclass compactness and semantic
consistency [32].

Feature fusion and survival prediction

Clinical patient information, such as age, disease history,
diagnostic records, and work environment, is critical to
obtaining the correct diagnosis. The clinician’s diagnosis
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Fig. 4 Longitudinal
self-attention mechanism. The
module takes the stacked
multi-period deep features as
input and implements the weight
distribution of the characteristics
of different periods and different
channels through matrix
transformation measures

often relies on the integration of both medical images and
clinical information. To enable the computer to fully simulate
the clinician’s diagnostic process, we effectively integrate
the CT images and some key clinical data for improving the
DSS prediction performance. By using the fused features as
the input of the softmax classifier, the probability values of
the final classification of different patients as long-survivor,
med-survivor, and short-survivor can be obtained.

Experiments

Dataset and evaluationmetrics

The sources of longitudinal lung cancer CT images and clin-
ical data from the National Lung Screening Trial (NLST)
datasets are available upon request [33,34]. The authority of
the data and record comprehensiveness in a certain extent to
ensure the credibility of the forecasting model. Our datasets
contain a total of 198 cases. For the longitudinal CT images,
the time to study in NLST is often described in “study years”
using the notation T [X ], as in T 0, T 1, T 2, etc. To elim-
inate the background area on the image of the study, this
article invited an experienced physician to manually seg-
ment the pulmonary nodule interest area as the basis of the
study. For the labeling of the same nodule in the longitu-
dinal image, it is first necessary to register the longitudinal
image at different times using multi-atlas image registration
method. Then, the physicianwill segment and label the image
containing the nodule after the registration. All pulmonary
nodules ROI are manually segmented by a partner physician
using 3D Slicer (version 4.11.20210226; https://download.
slicer.org/). In clinical data, the collection of data records
including the serial number of patients, diagnosis, age, race,
primary lesion location, tumor size, but also including the
patient’s follow-up records and survival state, etc. Five years
and 3 years were taken as thresholds to divide patients with
lung cancer [6]. Taking into account the clinical significance
between the groups and the distribution of our data, the sam-
ples are divided into long-survival (greater than 60 months)

med-survival (between 36 and 60months), and short-survival
(less than 36 months) patients according to the thresholds.
We employ Accuracy, macroF1, and microF1 to evaluate the
classification performance of DSS survival for lung cancer
patients.

Moreover, the confusion matrix is a standard format for
accuracy evaluation, which is often used to visually evaluate
the performance of supervised learning algorithms [35].

Results of feature selection

The top ten most influential clinical information variables
for DSS are illustrated in Fig. 5. The figure shows that
information such as cancer cell type, cancer stage, cancer
location, patient age, and education has a great influence on
the prediction of survival. However, the performance of the
model usually decreases as the number of selected features
increases. In this issue, a trade-off is made between test set
accuracy and model complexity by comparing experiments.
Figure 6 shows that the highest accuracy is achievedwhenwe
select 7 features for training. Therefore, in this experimental
study, the top seven clinical attributes (including cancer type,
stage, initial diagnosis result, age, the status of treatment,
tumor location, and level of education) ranked in importance
to the DSS are selected for fusion with the deep features from
CT images, and the selected clinical information variables are
listed in Table 1.

Results of survival prediction

In this section, we depict the classification results of our pro-
posed model in detail and provide a brief discussion and
analysis of the results. The confusion matrix is used as an
important tool to evaluate the error of the classification prob-
lem. We construct the confusion matrix of the proposed
model, as shown in Fig. 7. As can be seen from the figure, our
proposedmodel can successfully classify the test sample into
three categories: short survivors, medium survivors, and long
survivors. Among them, the long-survivor has the highest
percentage of correct predictions with 88.63%, followed by
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Fig. 5 Rank the importance of attributes to DSS in all clinical informa-
tion. Variables with higher feature scores indicate a greater influence
on DSS. Can_type, De_stag, Can_scr, Age, Treatlc, Locmed, Edu-
cat, Respain, Medcomplc and Wrkchem represent the cancer cell type,
lung cancer stage, result of the screen, age at randomization, status of
treatment data, cancer in mediastinum, level of education completed,
whether engaged in paint work, earlier complications related to lung
cancer and whether engaged in chemical/plastic manufacturing

Fig. 6 The influence of the variation of the number of features on the
prediction accuracy. The highest accuracy of the model prediction is
achieved when the number of features is chosen to be 7

Fig. 7 Confusion matrix for the proposed model

the short-survivor with 86.49%, and finally the med-survivor
with 85.21%. This result ensures that the classification of the
three categories is performed correctly.

To verify the effectiveness of multi-period deep feature
fusion, we also adopt the same single-branch residual neu-
ral network to perform DSS prediction for CT image data
of each period. The detailed classification results are listed
in Table 2. Where the first three rows indicate the images of

periods T 0, T 1, and T 2, respectively as inputs for prediction
using ResNet alone, and mean indicates the average classifi-
cation accuracy of the three periods. MR-Net represents the
use of multi-branch ResNet, where images from three peri-
ods are simultaneously served as inputs to the network, and
the extracted multiple deep features are directly integrated
for prediction. MR-Net + LSM indicates the addition of a
longitudinal self-attention mechanism module to the model.
MS-ResNet represents our proposed complete model, which
adds the LSM module to MR-Net and further fuses the fil-
tered clinical attributes.

In order to further analyze the prediction effect of NSCLC
in MS-ResRet model, we divided the experimental dataset
into four types according to cell morphology: small cell car-
cinoma, adenocarcinoma, squamous cell carcinomaand large
cell carcinoma. These four types of data were input into the
proposed network model for training and testing. The exper-
imental results are shown in Table 3.

Finally, we further compare the methods and performance
of the proposed model with those of the state-of-the-art
research results. Table 4 summarizes the methods and per-
formance of these advanced models. Doppalapudi et al. used
only single-period images for lung cancer survival classifica-
tion in their study [8]. The artificial neural network, recurrent
neural network, and convolutional neural network are used
to extract deep features for prediction, respectively. An accu-
racy of 71.18% was achieved. Wang et al. proposed a model
for prognostic analysis using radiological features to make
predictions based on CT images of 173 non-small cell lung
cancer (NSCLC) patients [36].

The results indicate that our model has the advantage of
being able to cleverly combineCT images frommultiple peri-
ods compared to the most advanced models currently used
in the same field. The process of diagnosis is more similar to
that of clinicians, and its accuracy of survival prediction is
significantly better than that of other single-period studies.

The proposed model is validated using the NLST dataset.
To validate the effectiveness of multi-period CT image data
integration for DSS prediction, we have compared the pro-
posed network with the model using only single-period CT
data alone. To verify that the fusion of CT images and clini-
cal attributes can improve the predictive performance of lung
cancer-specific survival, we complete a comparison experi-
ment before and after the fusion of the two types of data. The
results in Table 2 provide ample evidence of the effective-
ness of survival classification using the temporal information
contained in multi-phase CT images. This also suggests that
multi-temporal information (MTI) must be considered in
similar medical aid diagnostics. Comparing the experimental
results, we can also draw the following points:

• When only one period image is used for prediction,
the image from T2 has the highest accuracy, while the
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Table 2 Comparison of
accuracy resulting from various
fusion approaches

Longitudinal information Approach Accuracy (%) MacroF1 (%) MicroF1 (%)

Non-fusion T0 78.52 77.65 78.52

T1 79.93 78.84 79.93

T2 81.30 80.47 81.30

Mean 79.92 78.99 79.92

Clinical data 80.34 79.90 80.34

Fusion MR-Net 82.54 81.67 82.54

MR-Net + LSM 85.94 84.84 85.94

MS-ResNet 86.78 85.82 86.78

Table 3 The experimental
results of different subtypes of
lung cancer in this model

Histology classes No. of patients(%) Accuracy (%) MacroF1 (%) MicroF1 (%)

Adenocarcinoma 41.9 88.02 87.78 88.02

Squamous cell carcinoma 34.3 86.83 86.33 86.83

Large cell carcinoma 9.1 80.92 80.34 80.92

Small cell carcinoma 14.7 85.44 85.16 85.44

Table 4 Comparison of the methodology and performance of our proposed model with the state-of-the-art studies

Methodology Performance

Doppalapudi et al. [8] The artificial neural network, recurrent neural network, and convolutional
neural network are used to extract deep features for prediction, respectively.

The prediction accuracy was 71.18
%

Wang et al. [36] Using radiological features to make predictions. The prediction accuracy was
79.6%

Proposed Deep spatiotemporal features and clinical information extracted from CT
image data of multiple periods are combined for DSS prediction.

The accuracy rate is up to 86.78%

image from T0 has the lowest accuracy. The experimen-
tal results show that our model can capture more deep
features related to survival from the images of the third
stage.

• Direct integration of the deep features of the three periods
using MR-Net can improve the classification accuracy to
some extent, but the effect is not particularly obvious.

• With the addition of the LSMmodule, the fusion network
can allocate appropriate weights to the features in differ-
ent periods, which can effectively improve the accuracy
of prediction.

• The integration of CT deep features and clinical infor-
mation can improve the predictive ability of the model.

In addition, we also conduct a series of comparisons between
the model and current related studies in the similar field, and
the experimental results are shown in Table 4. Our model
achieves the best results in several indicators and is able to
accurately classify lung cancer patients into long survivors,
medium survivors, and short survivors, and the accuracy rate
could reach 86.78%. The necessity and feasibility of combin-
ing longitudinal data with clinical data for research and the
great significance of DSS prediction are fully demonstrated.

Conclusion

In conclusion,we propose a survival predictionmethod based
on multi-branch residual convolutional neural networks. CT
image data from multiple periods of patients are used as
input to fully exploit the deep features of lesion region
of interest (ROI) images. By adding a temporal attention
mechanism, the deep features of different periods are given
different weights. The potential shared information among
different disease processes and time points is exploited to
explore the heterogeneity and complementarity of informa-
tion among multiple features, to comprehensively represent
the evolutionary information of lesions. Since the patient
case information has an important influence and role in the
diagnosis and analysis of the final condition, the temporal
information of multi-period CT image data is innovatively
utilized, while clinical information is effectively combined.
The model can more accurately predict the DSS of lung
cancer patients and is used to accurately perform progno-
sis assessment of lung cancer patients. By narrowing the
scope and further distinguishing the experimental dataset
according to cell morphology, using this model can achieve
more accurate results for adenocarcinoma and squamous cell
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carcinoma. The low prediction accuracy of large cell car-
cinoma is mainly due to the small amount of data. In the
follow-up work, we will obtain more datasets from the coop-
erative hospitals to train ourMS-ResNetmodel to continue to
improve the accuracy. It has promising application prospects
and can be extended to corresponding clinical studies to pro-
vide treatment decision support, improve patient satisfaction,
and achieve individualized treatment.
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