Skip to main content

Advertisement

Log in

A personalized image-guided intervention system for peripheral lung cancer on patient-specific respiratory motion model

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Due to respiratory motion, precise tracking of lung nodule movement is a persistent challenge for guiding percutaneous lung biopsy during image-guided intervention. We developed an automated image-guided system incorporating effective and robust tracking algorithms to address this challenge. Accurate lung motion prediction and personalized image-guided intervention are the key technological contributions of this work.

Methods

A patient-specific respiratory motion model is developed to predict pulmonary movements of individual patients. It is based on the relation between the artificial 4D CT and corresponding positions tracked by position sensors attached on the chest using an electromagnetic (EM) tracking system. The 4D CT image of the thorax during breathing is calculated through deformable registration of two 3D CT scans acquired at inspiratory and expiratory breath-hold. The robustness and accuracy of the image-guided intervention system were assessed on a static thorax phantom under different clinical parametric combinations.

Results

Real 4D CT images of ten patients were used to evaluate the accuracy of the respiratory motion model. The mean error of the model in different breathing phases was 1.59 ± 0.66 mm. Using a static thorax phantom, we achieved an average targeting accuracy of 3.18 ± 1.2 mm across 50 independent tests with different intervention parameters. The positive results demonstrate the robustness and accuracy of our system for personalized lung cancer intervention.

Conclusions

The proposed system integrates a patient-specific respiratory motion compensation model to reduce the effect of respiratory motion during percutaneous lung biopsy and help interventional radiologists target the lesion efficiently. Our preclinical studies indicate that the image-guided system has the ability to accurately predict and track lung nodules of individual patients and has the potential for use in the diagnosis and treatment of early stage lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A (2020) Cancer statistics. CA Cancer J Clin 70:7–30. https://doi.org/10.3322/caac.21590

    Article  PubMed  Google Scholar 

  2. Howlader N, Forjaz G, Mooradian MJ, Meza R, Feuer EJ (2020) The effect of advances in Lung-Cancer treatment on population mortality. N Engl J Med 383:640–649. https://doi.org/10.1056/NEJMoa1916623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Akushevich I, Kravchenko J, Yashkin AP, Fang F, Yashin AI (2019) Partitioning of time trends in prevalence and mortality of lung cancer. Stat Med 38:3184–3203. https://doi.org/10.1002/sim.8170

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bach PB, Jett JR, Pastorino U, Tockman MS, Swensen SJ, Begg CB (2007) Computed tomography screening and lung cancer outcomes. JAMA 297:953–961. https://doi.org/10.1001/jama.297.9.953

    Article  CAS  PubMed  Google Scholar 

  5. Winokur RS, Pua BB, Sullivan BW, Madoff DC (2013) Percutaneous lung biopsy: technique, efficacy, and complications. Semin Intervent Radiol 30:121–127. https://doi.org/10.1055/s-0033-1342952

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chang YY, Chen CK, Yeh YC, Wu MH (2018) Diagnostic feasibility and safety of CT-guided core biopsy for lung nodules less than or equal to 8 mm: a single-institution experience. Eur Radiol 28:796–806. https://doi.org/10.1007/s00330-017-5027-1

    Article  PubMed  Google Scholar 

  7. Liu XL, Li W, Yang WX, Rui MP, Yang LP (2019) Computed tomography-guided biopsy of small lung nodules: diagnostic accuracy and analysis for true negatives. J Int Med Res 48:1–10. https://doi.org/10.1177/0300060519879006

    Article  CAS  Google Scholar 

  8. Krücker J, Xu S, Glossop N, Viswanathan A, Borgert J, Schulz H, Wood BJ (2007) Electromagnetic tracking for thermal ablation and biopsy guidance: clinical evaluation of spatial accuracy. J Vasclntem Radio 1(18):1141–1150. https://doi.org/10.1016/j.jvir.2007.06.014

    Article  Google Scholar 

  9. Frantz DD, Wiles AD, Leis SE, Kirsch SR (2003) Accuracy assessment protocols for electromagnetic tracking systems. Phys Med Biol 48:2241–2251. https://doi.org/10.1088/0031-9155/48/14/314

    Article  CAS  PubMed  Google Scholar 

  10. Barratt DC, Davies AH, Hughes AD, Thom SA, Humphries KN (2001) Optimisation and evaluation of an electromagnetic tracking device for high-accuracy three-dimensional ultrasound imaging of the carotid arteries. Ultrasound Med Biol 27:957–968. https://doi.org/10.1016/S0301-5629(01)00395-7

    Article  CAS  PubMed  Google Scholar 

  11. Milne AD, Chess DG, Johnson JA, King GJW (1996) Accuracy of an electromagnetic tracking device: a study of the optimal range and metal interference. J Biomech 29:791–793. https://doi.org/10.1016/0021-9290(96)83335-5

    Article  CAS  PubMed  Google Scholar 

  12. Banovac F, Tang J, Xu S, Lindisch D, Chung HY, Levy EB, Chang T, McCullough MF, Yaniv Z, Wood BJ, Cleary K (2005) Precision targeting of liver lesions using a novel electromagnetic navigation device in physiologic phantom and swine. Med Phys 32:2698–2705. https://doi.org/10.1118/1.1992267

    Article  PubMed  Google Scholar 

  13. Zhao Z, Jordan S, Tse ZTH (2019) Devices for image-guided lunginterventions: state-of-the-art review. J Eng Med 233:444–463. https://doi.org/10.1177/0954411919832042

    Article  Google Scholar 

  14. Grasso RF, Faiella E, Luppi G, Schena E, Giurazza F, Vescovo RD, D’Agostino F, Cazzato RL, Zobel BB (2013) Percutaneous lung biopsy: comparison between an augmented reality CT navigation system and standard CT-guided technique. Int J Comput Assist Radiol Surg 8:837–848. https://doi.org/10.1007/s11548-013-0816

    Article  CAS  PubMed  Google Scholar 

  15. Müller J, Putora PM, Schneider T, Zeiseld C, Brutschec M, Batyc F, Markuse A, Kick J (2016) Handheld single photon emission computed tomography (handheld SPECT) navigated video-assisted thoracoscopic surgeryof computer tomography-guided radioactively markedpulmonary lesions. Interact Cardiovasc Thorac Surg 23:345–350. https://doi.org/10.1093/icvts/ivw136

    Article  PubMed  Google Scholar 

  16. Nagel M, Hoheisel M, Bill U, Klingenbeck-Regn K, Kalender WA, Petzold R (2008) Electromagnetic tracking system for minimal invasive interventions using a C-arm system with CT option: first clinical results. In: Proceedings of the medical imaging 2008: visualization,image-guided procedures, and modeling, San Diego, CA,24 Bellingham, WA: SPIE. 6918. https://doi.org/10.1117/12.769408

  17. Gruionu LG, Saftoiu A, Popa T, Ciobrc C, Streba CT, Ioncic AM, Gruionu G (2016) Feasibility study of a novel navigation system for biopsy of peripheral lesions in the lungs. Curr Health Sci J 42:76–81. https://doi.org/10.12865/CHSJ.42.01.11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sorger H, Hofstad EF, Amundsen T, Lango T, Leira H (2016) A novel platform for electromagnetic navigated ultrasound bronchoscopy (EBUS). Int J Comput Assist Radiol Surg 11:1431–1443. https://doi.org/10.1007/s11548-015-1326-7

    Article  PubMed  Google Scholar 

  19. Sorger H, Hofstad EF, Amundsen T, Lango T, Bakeng JBL, Leira HO (2017) A multimodal image guiding system for navigated ultrasound bronchoscopy (EBUS): a human feasibility study. PLoS ONE 12:e0171841. https://doi.org/10.1371/journal.pone.0171841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. He TC, Xue Z, Lu K, Alvaradoa MVY, Wong KK, Xie WX, Wong ST (2012) A minimally invasive multi-modality image-guided (MIMIG) system for peripheral lung cancer intervention and diagnosis. Comput Med Imaging Graph 36:345–355. https://doi.org/10.1016/j.compmedimag.2012.03.002

    Article  PubMed  Google Scholar 

  21. McClelland JR, Hawkes DJ, Schaeffter T, King AP (2013) Respiratory motion models: a review. Med Image Anal 17:19–42. https://doi.org/10.1016/j.media.2012.09.005

    Article  CAS  PubMed  Google Scholar 

  22. McClelland JR, Modat M, Arridge S, Grimes H, Souza DD, Thomas D, Connell DO, Low DA, Kaza E, Collins DJ, Leach MO, Hawkes DJ (2017) A generalized framework unifying image registration and respiratory motion models and incorporating image reconstruction, for partial image data or full images. Phys Med Biol 62:4273. https://doi.org/10.1088/1361-6560/aa6070

    Article  PubMed  PubMed Central  Google Scholar 

  23. Klinder T, Lorenz C, Ostermann J (2010) Prediction framework for statistical respiratory motion modeling. MICCAI 2010. Part III LNCS 6363:327–334. https://doi.org/10.1007/978-3-642-15711-0_41

    Article  Google Scholar 

  24. Ehrhardt J, Werner R, Schmidt-Richberg A, Handels H (2011) Statistical modeling of 4D respiratory lung motion using diffeomorphic image registration. IEEE Trans Med Imag 30:251. https://doi.org/10.1109/TMI.2010.2076299

    Article  Google Scholar 

  25. Wu G, Wang Q, Lian J, Shen D (2011) Estimating the 4D respiratory lung motion by spatiotemporal registration and building super-resolution image. MICCAI 2011. Part I LNCS 6891:532–539. https://doi.org/10.1007/978-3-642-23623-5_67

    Article  Google Scholar 

  26. Zhang QH, Pevsner A, Hertanto A, Hu YC, Rosenzweig KE, Ling CC, Mageras GS (2007) A patient-specific respiratory model of anatomical motion for radiation treatment planning. Med Phys 34:4772–4781. https://doi.org/10.1118/1.2804576

    Article  PubMed  Google Scholar 

  27. Fayad H, Pan T, Pradier O, Visvikis D (2012) Patient specific respiratory motion modeling using a 3D patient’s external surface. Med Phys 39(6):3386–3395. https://doi.org/10.1118/1.4718578

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chung JH, Chun M, Ji K, Park JM, Shin KH (2020) Three-dimensional versus four-dimensional dose calculation for breast intensity-modulated radiation therapy. BJR 108:e321–e322. https://doi.org/10.1259/bjr.20200047

    Article  Google Scholar 

  29. Nakamura M, Ishihara Y, Matsuo Y, Iizuka Y, Ueki N, Iramina H, Hirashima H, Mizowaki T (2018) Quantification of the kV X-ray imaging dose during real-time tumor tracking and from three- and four-dimensional cone-beam computed tomography in lung cancer patients using a Monte Carlo simulation. J Radiat Res 59:173 181. https://doi.org/10.1093/jrr/rrx098

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ibáñez L, Schroeder W, Ng, L, Cates J. and the Insight Software Consortium (2003) The ITK Software Guide. http://www.itk.org

  31. He TC, Xue Z, Xie WX, Wong STC (2010) Online 4-D CT estimation for patient-specific respiratory motion based on real-time breathing signals. MICCAI Part III 6363:392–399. https://doi.org/10.1007/978-3-642-15711-0_49

    Article  Google Scholar 

  32. He TC, Xue Z, Yu N, Nitsch PL, Teh BS, Wong STC (2014) Estimating dynamic lung images from high-dimension chest surface motion using 4D statistical model. MICCAI Part II 8674:138–145. https://doi.org/10.1007/978-3-319-10470-6_18

    Article  Google Scholar 

  33. Zhong ZC, Guo XH, Cai YQ, Yang Y, Wang J, Jia X, Mao W (2016) 3D–2D deformable image registration using feature-based nonuniform meshes. Biomed Res Int. https://doi.org/10.1155/2016/4382854

    Article  PubMed  PubMed Central  Google Scholar 

  34. Paquin D, Levy D, Xing L (2007) Hybrid multiscale landmark and deformable image registration. Math Biosci Eng 4:711–737. https://doi.org/10.3934/mbe.2007.4.711

    Article  PubMed  Google Scholar 

  35. Krüger J, Ehrhardt J, Bischof A, Handels H (2013) Breast compression simulation using ICP-based B-spline deformation for correspondence analysis in mammography and MRI datasets. SPIE Medical Imaging. Int Soc Optics Photonics 8669:372–379. https://doi.org/10.1117/12.2006356

    Article  Google Scholar 

  36. Fitzgibbon AW (2003) Robust registration of 2D and 3D point sets. British Mach Vision Conf. https://doi.org/10.1016/j.imavis.2003.09.004

    Article  Google Scholar 

  37. Rueckert D, Sonoda LI, Hayes C, Hill DLG, Leach MO, Hawkes DJ (1999) Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans Med Imaging 18(8):712–721. https://doi.org/10.1109/42.796284

    Article  CAS  PubMed  Google Scholar 

  38. Nithiananthan S, Brock KK, Daly MJ, Chan H, Irish JC, Siewerdsen JH (2009) Demons deformable registration for CBCT-guided procedures in the head and neck: Convergence and accuracy. Med Phys 36:4755–4764. https://doi.org/10.1118/1.3223631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Reaungamornrat S, Liu WP, Wang AS, Otake Y, Nithiananthan S, Uneri A, Schafer S, Tryggestad E, Richmon J, Sorger JM (2013) Deformable image registration for cone-beam CT guided transoral robotic base-of-tongue surgery. Phys Med Biol 58:4951–4979. https://doi.org/10.1088/0031-9155/58/14/4951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fayad HJ, Bakhous C, Pan T, Visvikis D (2012) Optical flow vs bspline image registration for respiratory motion modeling. In: Nuclear science symposium and medical imaging conference (NSS/MIC), IEEE. https://doi.org/10.1109/NSSMIC.2012.6551898

  41. Boldea V, Sharp GC, Jiang SB, Sarrut D (2008) 4D-CT lung motion estimation with deformable registration: quantification of motion nonlinearity and hysteresis. Med Phys 35:1008–1018. https://doi.org/10.1118/1.2839103

    Article  PubMed  Google Scholar 

  42. Sarrut D, Boldea V, Miguet S, Ginestet C (2006) Simulation of four-dimensional CT images from deformable registration between inhale and exhale breath-hold CT scans. Med Phys 33:605–617. https://doi.org/10.1118/1.2161409

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Kelvin Wong for his contribution of an early version of IGT system and thank Solomon S. Y. Wong for revising the article.

Funding

This study was funded by the National Key R&D Program of China (2017YFB1300204), Hefei Foreign Cooperation Project (ZR201801020002), the Natural Science Fund of Anhui Province (2008085MC69), Collaborative Innovation Program of Hefei Science Center (2020HSC-CIP001), CAS Anhui Province Key Laboratory of Medical Physics and Technology (LMPT201904) and Director’s Fund of Hefei Cancer Hospital of CAS (YZJJ2019C14, YZJJ2019A04) to TW, ZZ, QC, LZ, GX, LY, HW, HL) and Texas CPRIT RP110428 and John S Dunn Research Foundation to TCH and STCW.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stephen T. C. Wong or Hai Li.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed Consent

Retrospective study: For this type of study formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., He, T., Zhang, Z. et al. A personalized image-guided intervention system for peripheral lung cancer on patient-specific respiratory motion model. Int J CARS 17, 1751–1764 (2022). https://doi.org/10.1007/s11548-022-02676-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-022-02676-2

Keywords

Navigation