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Abstract
Purpose Advanceddevelopments in themedical field havegradually increased thepublic demand for surgical skill evaluation.
However, this assessment always depends on the direct observation of experienced surgeons, which is time-consuming and
variable. The introduction of robot-assisted surgery provides a new possibility for this evaluation paradigm. This paper aims
at evaluating surgeon performance automatically with novel evaluation metrics based on different surgical data.
Methods Urologists (n = 10) from a hospital were requested to perform a simplified neobladder reconstruction on an ex
vivo setup twice with different camera modalities (n = 2) randomly. They were divided into novices and experts (n = 5,
respectively) according to their experience in robot-assisted surgeries. Different performance metrics (n = 2) are proposed
to achieve the surgical skill evaluation, considering both instruments and endoscope. Also, nonparametric tests are adopted
to check if there are significant differences when evaluating surgeons performance.
Results When grouping according to four stages of neobladder reconstruction, statistically significant differences can be
appreciated in phase 1 (p = 0.0284) and phase 2 (p = 0.01953) with normalized time-related metrics and camera movement-
related metrics, respectively. On the other hand, considering experience grouping shows that both metrics are able to highlight
statistically significant differences between novice and expert performances in the control protocol. It also shows that the
camera-related performance of experts is significantly different (p = 0.003153) when handling the endoscope manually and
when it is automatic.
Conclusion Surgical skill evaluation, using the approach in this paper, can effectivelymeasure surgical procedures of surgeons
with different experience. Preliminary results demonstrate that different surgical data can be fully utilized to improve the
reliability of surgical evaluation. It also demonstrates its versatility and potential in the quantitative assessment of various
surgical operations.

Keywords Surgical skill evaluation · Robot-assisted surgeries · Performance metrics · Significant differences

Introduction

The skill level of a surgeon, which is highly variable, can
be determined by several factors, which include cognitive
capabilities, judgment and decisionmaking, andmanual dex-
terity [1,2]. With more recent advances in surgery, such

B Ziyang Chen
ziyang.chen@polimi.it

1 Department of Electronics, Information and Bioengineering,
Politecnico di Milano, Milan, Italy

2 Department of Mathematics and Computer Science,
University of Calabria, Rende, Italy

3 Istituto Europeo di Oncologia, Milan, Italy

as minimally invasive surgeries (MIS) and laparoscopy-
based procedures, surgical technical skill requirements are
increasingly more demanding due to the complexity of these
procedures [3,4]. Although significant strides have been
taken to improve surgical technical skill training and assess-
ments, methods to differentiate and standardize technical
skill levels are still under development [5]. It is essential
to emphasize the importance of surgical skill evaluation,
because surgeons can conduct targeted practices based on
the feedback obtained from the skill evaluation to improve
their operation.

Manual skill assessment was widely adopted in pre-
vious stage, and it requires evaluators to manually rate
performance. Generally, a senior surgeon observes a student
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performing a task and either gives verbal feedback or skill
evaluation can be performed by using rated checklists [6].
It allows for greater standardization and better outcomes in
terms of inter-rater reliability. However, it should be noted
that manual assessment tools measure the evaluator’s per-
ception of the surgical performance quality, which implies
variability and unreliability of surgical evaluation criteria.
Thanks to the development of robotic surgical assessment
tools, it is currently available for quantitative skill evaluation
[7,8].

Hence, it is extremely important to find objective metrics
that could appropriately describe the surgical performance
without requiring the presence of an expert surgeon. One
of the advantages of using surgical robots is the possibility
to keep tracking movements made by the surgeon thanks to
the tracking systems they have integrated, such as da Vinci
system. This allows exploiting the other possible way of
addressing surgical skill evaluation: automated assessment
[9]. Different from the manual approach, this kind of evalu-
ation is performed by the direct computation of quantitative
performance metrics [10]. It means that during the surgery,
robotic instrument kinematic tracking data (i.e., instrument
traveling distance, moving velocity, acceleration and decel-
eration), system events data (i.e., camera movement, master
clutch use, third instrument swap and energy application)
and surgical video data (i.e., surgical footage annotation)
can be recorded [7]. All this information can be success-
fully exploited to define objective metrics for surgical skill
evaluation.

The aim of this work is to evaluate surgeon performance
when carrying out an experiment conducted on the da Vinci
Research Kit (dVRK) in a dry laboratory setup, compar-
ing two ways of controlling the endoscope: automatically,
through the implementation of System for Autonomous
Camera Navigation (SCAN) [11] and manually (classi-
cal approach). Particularly, such analysis is carried out by
defining appropriate performance metrics for surgical skill
assessment, which serve to investigate the impact on the per-
formance of different stages and surgeons’ experience.

Methods

System setup

As far as this experimental study is concerned, a standard
first-generation dVRK, available at Politecnico di Milano, is
used for data acquisition. The mechanical hardware can be
divided into follower side and leader side [12]. For the fol-
lower side, two Patient SideManipulators (PSMs), labeled as
PSM1 and PSM2, are used to hold different surgical instru-
ments, and an Endoscopic Camera Manipulator (ECM) is
equipped with a full HD stereo endoscope. On the other

hand, the leader side is essentially made up of the mas-
ter console, composed of: two Master Tool Manipulators
(MTMs), labeled as MTML and MTMR, aim for teleop-
eration; a High-Resolution Stereo Viewer (HRSV) with a
resolution of 640 × 480 can provide 3D surgical scenes for
the surgeon; and a foot-pedal tray is used to switch between
different operation modes.

Two different control modes of the endoscope are adopted
to conduct the experimental study, one is the manual con-
trol by surgeons and another one represents the autonomous
endoscope navigation which is achieved by the SCAN algo-
rithm in [11] to provide the user with an optimal viewpoint in
an automatic fashion. It should be noted that manual camera
control is a common application mode in clinical practice,
while autonomous camera mode is a tentative control mode
and it is not currently used in clinical practice for the safety
purpose.

• Manual camera control (MC) modality: the endoscope
position is handled in the traditional way, i.e., with the ded-
icated foot pedal on the master console, it is possible to
suspend PSMs’ teleoperation and switch to endoscope con-
trol.

• Autonomous camera control (AC) modality: the sys-
tem continuously tracks the surgical tools and accordingly
adjusts the endoscope’s position (EP), resulting in an ongo-
ing adjustment of the field of view (FoV). For example, the
FoV can be centered on the midpoint of the centers of mass
of the two surgical tools (CoMl and CoMr for the left and
right tool respectively). As shown in Fig. 1, SC means the
scene center, and RCM stands for remote center of motion
that in MIS corresponds to the small incision through which
the surgical tools or the camera penetrate the patient’s skin
[13].

Fig. 1 Perspective representation of how the position of the endoscope
in Cartesian space is changed according to the position of the instru-
ments

123



International Journal of Computer Assisted Radiology and Surgery (2022) 17:2315–2323 2317

Surgical protocol

Twelve surgeons from the European Institute of Oncology
(Milan, Italy) were requested to perform an orthotropic
neobladder reconstruction, and data from 10 participants
are analyzed for this skill evaluation. (The remaining two
surgeons failed to perform this procedure caused by exter-
nal factors, so this part of data was discarded). Since the
users were characterized by a different level of robotic
manipulation experience, they were divided into two groups:
participants who had performed less than 20 robot-assisted
MIS operations were considered novices, while those who
performedmore than 20 were deemed experts. For the exper-
iment, this surgical procedure was reproduced on an ex vivo
porcine model in a simplified version, with the aim of mini-
mizing the waste of animal tissue. Three steps were selected

to be reproduced: (i) bowel distension and measurement; (ii)
detubularization; (iii) neobladder plication and suturing [14].
Each surgeon was asked to perform the simplified neoblad-
der reconstruction twice, randomly starting with MC or AC.
This configuration is to reduce the prior knowledge andmem-
ory when users repeat the same experiment for a short time.
Figure 2 shows the details about this protocol. The control
protocol means that the user completes the experiment by
manually manipulating the endoscope, while the experimen-
tal protocol is accompanied by the assistance of autonomous
navigation of the endoscope.

Data acquisition and preprocessing

At the end of a da Vinci robot operation session, the sys-
tem makes available two different types of data that have

Fig. 2 This figure shows the
details of the surgical protocol.
Ten surgeons were divided into
novices and experts according to
their surgical experience. Then,
the users were requested to
perform the simplified
Neobladder Reconstruction
twice randomly to compare the
two different endoscopic control
modalities
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Fig. 3 One sample of the raw data (User 6, control protocol). (a) shows
some video frames in this Neobladder Reconstruction, and (b) is the
task completion time divided by four phases. (c) is the 3D position of

PSM1 and PSM2, the last one (d) denotes the camera velocity. The dis-
play of PSMs position and camera velocity is only partially shown to
avoid congestion caused by too many data points

been successfully exploited for this analysis: system data and
videodata. Systemdata include all the informationmadepub-
lic by the dVRK system, such as kinematic variables (e.g.,
poses, twists, wrenches), joint space variables (e.g., angu-
lar velocities, torques), system information and sensor data.
On the other hand, video data include compressed images
recorded by the endoscope. Figure 3 demonstrates a sample
of the collected raw data.

Two main preprocessing steps have been carried out. The
first one was “phase division” and to perform it endoscopic
video data were exploited. On the basis of the advice and
opinions taken from expert surgeons involved in the exper-
iment, the entire surgical procedure was divided into four
distinct sub-phases: (1) bowel distension and measurement;
(2) detubularization (simulated with the demographic pen);
(3) neobladder posterior wall suturing; (4) neobladder ante-
rior wall suturing. It was considered appropriate to treat the
suturing of the walls in two separate phases because, accord-
ing to the expert’s opinion, the two tasks are considered to
have different difficulty levels. In particular, anterior wall
suturing is deemed to be more complex with respect to pos-
terior wall. Here, the phase division of all datawas completed
by an annotator under the supervision of the expert. The sec-
ond step was to carry out a preliminary cleaning of the data
to eliminate inconsistencies and prepare it for the following
analysis. This is done to highlight whether, throughout the
entire duration of the operation, there were any interruptions

to the workflow and then to cut out from the signal all the
parts where the surgeonwas not actually performing the task.
To accomplish this, the data provided by the 4 head sensors
placed on the HRSV located at the master console proved to
be available. These sensors provide messages that can take
on 3 possible values: 0, 1 or 2. When the data is 0, this is
interpreted as an interruption of the operation since it indi-
cates that the sensor has detected surgeon’s head detachment.
If such sensors reveal the occurrence of an interruption, the
kinematic data corresponding to the time intervals would be
discarded.

Metrics for surgical skill evaluation

To evaluate the users’ performance in executing the experi-
ment, some metrics [15,16] for surgical skill evaluation have
been defined. Each metric will assume a different value for
each user i ∈ [1, 10], for each phase j ∈ [1, 4], and for
each control strategy k = “e”, “c”, where “e” means the
experimental protocol, “c” is the control protocol. Here,
experimental and control protocols represent the operation
in AC and MC, respectively.

Time-related metrics

Task completion time (CompTime) is defined as the total
time (in seconds) required to complete the task:
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CompTime i, j,k = tend − tstart (1)

where tend and tstart are the phase ending and starting time
instants, respectively. A shorter CompTime means the task
is completed in less time. Economy of motion (EoM) is
defined as the total length (in meters) of the curve described
by the tip of the instruments in space from the beginning
until the completion of the task [17], and a smaller EoM
denotes the operation is performed with less useless instru-
ment movement. The total path length traveled by the tools
was computed with the following formula:

PLi, j,k =
∫ tend

tstart

√(
dx

dt

)2

+
(
dy

dt

)2

+
(
dz

dt

)2

dt (2)

where x , y and z represent the Cartesian coordinates of the
position of the instrument (PSM1 or PSM2) in the 3D space
at time instant t . The final value of the metric is then obtained
by summingwhat results from applying the previous formula
to the kinematic data of both the PSMs:

EoMi, j,k = PLPSM1 + PLPSM2 (3)

Camera movement-related metrics

Camera metrics are related to the endoscope’s movement.
To compute them, ECM velocity data are exploited in order
to define endoscope motion or stillness. More precisely, an
endoscope movement is considered to begin when the veloc-
ity is nonzero and to end when the velocity returns to zero.
The time intervals of endoscope motion are then computed,
and a certain number of durations (in seconds) are thus
obtained: {T1, T2, . . . , TN }. Camera movement frequency
(CFreq) is defined as the average number of endoscopemove-
ments made by a surgeon over the entire exercise:

CFreq i, j,k = N

Ttot
(4)

where N represents the number of movements performed by
the endoscope in the considered phase, Ttot is the total dura-
tion of the chosen phase. The larger CFreq means the higher
camera movement frequency for the optimal surgical field of
vision. Camera movement duration (CDur) is defined as the
average time in seconds of all endoscopemovements over the
entire exercise, and the shorter CDur denotes that surgeons
spend less time adjusting the viewpoint of the endoscope:

CDur i, j,k = 1

N

N∑
t=1

Tt (5)

Performance metrics

Similar as [15], the overall performancemetrics P time-accuracy
i, j,k

and Pcamera
i, j,k were defined for both time-related metrics and

camera movement-related metrics. Given the considerable
variability of the data collected due to the different experi-
ence of the surgeons involved and the different strategies that
they used, it was considered appropriate to first carry out nor-
malization of the metrics so that they could take on values
between 0 and 1:

mi = mi − mmin

mmax − mmin
(6)

wheremi represents the normalized value of themetric,mmin

and mmax , respectively, represent the lowest and the highest
value that the metric being considered assumes among all its
realizations. Performance metrics are thus computed:

P time-accuracy
i, j,k = (1 − CompTime ) + (1 − EoM )

2
(7)

Pcamera
i, j,k = CFreq + (1 − CDur )

2
(8)

where the upper bar stands for normalizedmetric, obtained
by applying (6). A larger P time-accuracy

i, j,k means that the sur-
geon has a better performance in operating the surgical
instruments to complete the entire surgical task, since it
presents that the surgeon can perform the whole task with
less useless movement of the instruments in less time. For
the metric of Pcamera

i, j,k , a larger value shows that the surgeon
can better control the movement of the endoscope to main-
tain the optimal surgical field, which is related to the surgical
safety. It should be noted that the control of the endoscope and
the surgical instruments is separated in the manual control
mode of the endoscope, while the movement of the endo-
scope follows the position of the surgical instrument in the
autonomous mode.

Statistical analysis

Due to the relatively small sample size, nonparametric statis-
tical significance tests were exploited to compare the objec-
tive metrics between the different camera control modalities.
Specifically, the Wilcoxon rank sum test [18] was used,
considering differences to be statistically significant when
p ≤ 0.05. Once the metrics have been computed, outcomes
are evaluated in pairs according to different criteria. Met-
rics relative to the same phase are firstly compared when
considering different control strategies. Subsequently, users
are grouped according to their experience and the statisti-
cal analysis is applied both between participants of different
experience considering the same protocol and then differ-
ences are searched considering the outcomes of different
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Fig. 4 Workflow diagram of the data analysis. The above block explains the necessary data, including video and system data, while the following
block shows the adopted surgical skill assessment approaches in our surgical skill evaluation

protocols for novices and experts separately. Themain objec-
tive is to investigate what influence both experience and the
method of endoscope control can have on the performance
of surgeons. Figure 4 presents a workflow diagram of the
framework in which this analysis has been developed, start-
ing from the collection and preprocessing of the data up to
the goal of surgical skill evaluation.

Results and discussion

This analysis is conducted to investigate whether there are
significant differences between the metrics that result when
considering the control configuration (MC) and those con-
sidering the experimental case (AC). Also, it is possible to

group the obtained data in different ways to highlight differ-
ent features, if any.

Figures 5 and 6 show the box plots of Performancemetrics
P time-accuracy and Pcamera, respectively. The bars represented
on top serve to show the pair of data to which Wilcoxon’s
paired analysis was applied. The resulting p-value is associ-
ated to a certain label, depending on the significance of the
result, according to the following legend: (i) ns: 0.05 < p ≤
1; (ii) ∗: 0.01 < p ≤ 0.05; (iii) ∗∗: 0.001 < p ≤ 0.01; (iv)
∗ ∗ ∗: 0.0001 < p ≤ 0.001; (v) ∗ ∗ ∗ ∗: p ≤ 0.0001.

Figure 5 left shows a significant difference (∗) of the value
assumed by themetric in phase 1 (p = 0.0284).Grouping the
results according to experience (Fig. 5 right) shows a signif-
icant difference (∗∗) in the performance achieved by novice
and experts during the control protocol (p = 0.003654).
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Fig. 5 Box plots of
P time-accuracy. Control protocol
means the users with manual
control, while experimental
protocol is with autonomous
control. Different protocol
comparison grouping results
according to different phases
(left) and different experience
(right). In the left figure, phase 1
is bowel distension and
measurement, phase 2
represents detubularization,
phase 3 denotes neobladder
posterior wall suturing, and
phase 4 is neobladder anterior
wall suturing

On the other hand, Fig. 6 left shows a significant dif-
ference (∗) in phase 2 in terms of camera performance
(p = 0.01953). Considering the experience-based division,
represented in Fig. 6 right, it shows a significant difference
(∗∗∗) during the control protocol (p = 0.0004826), and adif-
ference (∗∗) between expert surgeons executing the task with
the 2 different control modalities (p = 0.003153). In partic-
ular, the performance appears to decrease when autonomous
endoscope control rather than manual control is used.

It can be stated that P time-accuracy metric proved useful
in highlighting significant differences between control and
experimental protocols, but only in phase 1. In particular, the
performance appears to increase when autonomous endo-
scope control rather than manual control is employed. The
reason for this can be attributed to the fact that, according to
theway the sub-phases of the total task have been defined, it is
in the initial phases that themovement of the endoscopemust
be more frequent and extensive. In particular, the measure-
ment operation requires a frequent change of viewpoint,more
than what is needed to perform, for example, the suturing
task. It shows that if the surgeons need to perform some surgi-
cal operations with frequent field switching, the autonomous
movement of the endoscope can improve the performance
of surgeons in operating the surgical instruments, while the
different control modes of the endoscope do not introduce
significant difference in the operation of surgical instruments
if the visual field is relatively fixed. In addition, this metric
was also useful in highlighting the different experience of
the surgeons. Overall, it results in higher values for experi-

enced surgeons if compared to the case of novice surgeons.
It also presents the autonomous movement of the endoscope
can narrow the difference between novices and experts in the
manipulation of surgical instruments, since the significant
difference between novices and experts in the manual con-
trol disappears when the endoscope moves autonomously.
Nevertheless, novices need more practice in the operation
of surgical instruments, since they got lower values in both
modes of the endoscope compared with experts.

For the metric Pcamera, it proved useful in highlight-
ing significant differences between control and experimental
protocols, but only in phase 2. It can be seen that the
autonomous movement of the endoscope reduces the value
of the camerametric if the surgical field of vision is relatively
fixed, so it is easier for surgeons tomanually control the endo-
scope to maintain the best surgical field of vision in this case.
Moreover, a decrease in the score achieved by experienced
surgeons can be noted, evidenced by a significant difference
between the results obtained in the two control mode cases.
This can be attributed to the greater cognitive load that a sub-
ject already accustomed to and experienced in operating the
endoscope in the manual configuration is subjected to when
having to learn a new control strategy, even if it is auto-
matic. Hence, experts need more time to adapt to the new
control strategy compared with novices. Furthermore, there
is a significant difference between novices and experts in the
manual operation mode, which indicates that novices do not
make full use of endoscopes in the operation process. In other
words, they do not maintain the optimal surgical vision com-
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Fig. 6 Box plots of Pcamera.
Different protocol comparison
grouping results according to
different phases (left) and
different experience (right). In
the left figure, phase 1 is bowel
distension and measurement,
phase 2 represents
detubularization, phase 3
denotes neobladder posterior
wall suturing, and phase 4 is
neobladder anterior wall
suturing

pared with experts, so novices need to practice their ability
to manually operate endoscopes in order to keep the optimal
surgical vision.

After analyzing the experimental data, four findings can
also be summarized to improve the performance of surgeons:
(1) The autonomousmovement of endoscope ismore suitable
for the operation that needs frequent switching of surgical
viewpoint, while it does not bring great improvement when
the visual field of surgical task is relatively fixed. (2) The
manipulation ability of novices for surgical instruments is
always lower than that of experts under different control
modes, which means that novices need to strengthen this
practice in the operation of instruments. (3) The automatic
motion mode of endoscope is a challenge for experts due to
their prior knowledge, so they need more time to adapt to the
new mode. (4) The endoscope does not maintain the optimal
surgical vision in the manual operation mode for the novices
compared with experts, so the novices need to improve the
manipulation ability of the endoscope for the surgical safety.

Conclusions

This paper conducted a quantitative evaluation of surgical
skill based on the objective criteria involving surgical instru-
ments and endoscope. An ex vivo neobladder reconstruction
was performed by 10 urologists using SCAN framework or
manual endoscope control randomly. Two different normal-
ized metrics were used to evaluate surgical performance, and

it showed promising results for the skill evaluation and pro-
vided the practical guidance for surgeons. The evaluation
strategy in this paper uses various accessible data in robotic
surgery, including videos, robot kinematics, sensor data, etc.,
and considers the movements of both surgical instruments
and the endoscope, which enhances its generalization and
potential in other robot assisted surgeries.

One notable point is that the division standard for novices
and experts in this paper is under the agreement of an expert,
in order to balance the distribution of novices and experts.
More factors, such as the learning curve, will be considered
in future work to better divide surgeons at different levels.
Furthermore, users who repeat the experiments in a limited
time may be affected by muscle memory and prior knowl-
edge, which means that the data of usability study may need
to be further expanded.More surgical datawill be collected to
verify the versatility of the proposed approach in the future.
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