Skip to main content
Log in

Live cell imaging: a computational perspective

  • Survey Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

One of the primary challenges in understanding complex living systems requires a good understanding of the interactions between cellular and molecular functional units. Live cell imaging is the process of non-invasively analyzing dynamic processes in living cells using state-of-the-art microscopy and computer vision techniques. Live cell imaging research provides exciting and novel insights into cell biology. In this paper, we present an overview of live cell imaging research and detail the role of computational image processing in live cell imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adie, E.J., et al.: A pH-sensitive fluor, CypHer 5, used to monitor agonist-induced G protein-coupled receptor internalization in live cells. Biotechniques 33, 1152–1154 (2002)

    Google Scholar 

  2. Al-Awadhi, F., Jennison, C., Hurnz, M.: Statistical image analysis for a confocal microscopy 2D section of cartilage growth (2003)

  3. Anderson C.M., Georgiou G.G., Morrison I.E.G., Stevenson, G.V.W., Cherry, R.J.: Tracking of cell surface receptors by fluorescence digital imaging microscopy using a charge-coupled device camera: low-density lipoprotein and influenza virus receptor mobility at 4°C. J. Cell Sci. 101, 415–425 (1992)

    Google Scholar 

  4. Apgar J., Tseng Y., Federov E., Herwig M.B., Almo S.C., Wirtz, D.: Multiple-particle tracking measurements of the heterogeneities of solutions of actin filaments and actin bundles. Biophys. J. 79, 1095–1106 (2000)

    Google Scholar 

  5. Babcock, H.P., Chen, C., Zhuang, X.: Using single-particle tracking to study nuclear traficking of viral Genes. Biophys. J. 87, 2749 –2758 (2004)

    Article  Google Scholar 

  6. Bar-Shalom Y., Fortmann T.E., Scheffe M.: Joint probabilistic data association for multiple targets in clutter. In: Proceedings of the Conference on Information Sciences and Systems (1980)

  7. Beaudouin J., et al.: Nuclear envelope breakdown proceeds by microtubule-induced tearing of the lamina. Cell 108, 83–96 (2002)

    Article  Google Scholar 

  8. Berg, H.C.: Motile behavior of bacteria. Phys. Today 53(1), 24–29 (2000)

    Article  Google Scholar 

  9. Berglund A.J., Mabuchi, H.: Feedback controller design for tracking a single fluorescent molecule. Appl. Phys. B 78, 653–659 (2004)

    Article  Google Scholar 

  10. Betz, W.J., Angleson, J.K.: The synaptic vesicle cycle. Annu. Rev. Physiol. 60, 347–363 (1998)

    Article  Google Scholar 

  11. Bookstein, F.L.: Principal warps: thin-plate splines and the decomposition of deformations. IEEE Trans. Pattern Anal. Mach. Intell. 11, 567–585 (1989)

    Article  MATH  Google Scholar 

  12. Bornfleth, H., Sätzler, K., Eils, R., Cremer C.: High precision distance measurements and volume-conserving segmentation of objects near and below the resolution limit in three-dimensional confocal fluorescence microscopy. J. Microscopy. 189, 118–136 (1998)

    Google Scholar 

  13. Borst, H. Abmayr, W., Gais, P.: A thresholding method for automatic cell image segmentation 27(1), 180–187 (1979)

    Google Scholar 

  14. Bray, D.: Cell movements: from molecules to motility. Garland Science Publishing, New York (2002)

    Google Scholar 

  15. Blümich, B., Kuhn, W.: Magnetic resonance microscopy: methods and applications in materials science, agriculture and biomedicine (1992)

  16. Calapez A., et al.: The intranuclear mobility of messenger RNA binding proteins is ATP dependent and temperature sensitive. J. Cell Biol. 15, 795–805 (2002)

    Google Scholar 

  17. Cheezum M.K., Walker W.F., Guilford W.H.: Quantitative comparison of algorithms for tracking single fluorescent particles. Biophys. J. 81, 2378–2388 (2001)

    Google Scholar 

  18. Chalfie, M., et al.: Green fluorescent protein as a marker for gene expression. Science 263, 802–805 (1994)

    Article  Google Scholar 

  19. Comaniciu, D., Meer, P.: Cell image segmentation for diagnostic pathology, advanced algorithmic approaches to medical image segmentation: state-of-the-art applications in cardiology, neurology, mammography and pathology. In: Suri, J., Singh, S., Setarehdan, K. (eds.) Springer, Heidelberg (2001)

  20. da F. Costa, L., Cesar, Jr. R.M.: Shape analysis and classification, theory and practice, CRC Press, Boca Raton (2001)

  21. Cox, I.J., Leonard, J.J.: Modeling a dynamic environment using a Bayesian multiple hypothesis approach. Artif. Intell. 66(2), 311–344 (1994)

    Article  MATH  Google Scholar 

  22. Cline H.E., et al.: Two algorithms for the three-dimensional reconstruction of tomograms. Med. Phys. 15, 320–327 (1988)

    Article  Google Scholar 

  23. deBrabrander M., Nuydens R., Ishihara A., Holifield B., Jacobson K., Geerts H.: Lateral diffusion and retrograde movements of individual cell surface components on single motile cells observed with Nanovid microscopy. Cell Biol. 112, 1143–1150 (1991)

    Article  Google Scholar 

  24. Deshpande, A.V., Narote, S.P., Udupi, V.R., Inamdar, H.P.: A region growing segmentation for detection of microcalcificationin digitized mammograms. In: Proceedings of the International Conference on Cognition and Recognition (2005)

  25. Dierksen, K., Typke, D., Hegerl, R., Koster, A.J., Baumeister, W.: Towards automatic electron tomography. Ultramicroscopy 40, 71–87 (1992)

    Article  Google Scholar 

  26. Doucet, A., Gordon, N.J., Krishnamurthy, V.: Particle filters for state estimation of jump Markov linear systems. IEEE Trans. Signal Process. 49(3), 613–624 (2001)

    Google Scholar 

  27. Edidin M (1993) Patches and fences: probing for plasma membrane domains. J. Cell Sci. Suppl. 17, 165–169

    Google Scholar 

  28. Eils, R., Athale, C.: Computational imaging in cell biology. J. Cell Biol. 161(3), 477–481 (2003)

    Google Scholar 

  29. Elis, R., et al.: Quantitative imaging of pre-mRNA splicing factors in living cells. Mol. Biol. Cell. 11, 413–418 (2000)

    Google Scholar 

  30. Ehrhardt, D.: GFP technology for live cell imaging. Curr. Opin. Plant Biol. 6(6), 622–628(7) (2003)

    Google Scholar 

  31. Fletcher, L.M., Welsh, G.I., Oatey, P.B., Tavare, J.M.: Role for the microtubule cytoskeleton in the regulation of insulin-stimulated glucose uptake and GLUT4 trafficking. Biochem. J. 352, 267–276 (2000)

    Article  Google Scholar 

  32. Fletcher, L.M., Tavare, J.M.: Divergent signalling mechanisms involved in insulin-stimulated GLUT4 vesicle trafficking to the plasma membrane. Biochem. Soc. Trans. 27, 677–683 (1999)

    Google Scholar 

  33. Gebhard, M. et al.: Segmentation of 3D objects using NURBS surfaces for quantification of surface and volume dynamics. In: Conference on Diagnostic Imaging and Analysis (ICDIA), Shanghai, China, pp. 125–130 (2002)

  34. Gelles, J., Schnapp, B.J., Sheetz, M.P.: Tracking kinesin-driven movements with nanometre-scale precision. Nature 331, 450–453 (1988)

    Article  Google Scholar 

  35. Gerlich, D., et al.: Global chromosome positions are transmitted through mitosis in mammalian cells. Cell 112, 751–764 (2003)

    Article  Google Scholar 

  36. Ghosh, R.N., Webb, W.W.: Automated detection and tracking of individual and clustered cell surface low density lipoprotein receptor molecules. Biophys. J. 66, 1301–1318 (1994)

    Google Scholar 

  37. Gross, D.J., Webb, W.W.: Cell surface clustering and mobility of the liganded LDL receptor measured by digital video fluorescence microscopy. In: Spectroscopic Membrane Probes II, pp. 19–45 (1988)

  38. Guilak, F., et al.: Compression-induced changes in the shape and volume of the chondrocyte nucleus. J. Biomech. 28, 1529–1541 (1995)

    Article  Google Scholar 

  39. Han, J., Kamber, M.: Data mining: concepts and techniques, Academic Press, New York (2001)

  40. Herman, B.: Fluorescence microscopy, 2nd edn. Springer, New York, 170 pp. (1998)

    Google Scholar 

  41. Hicks, B.W., Angelides, K.J.: Tracking movements of lipids and Thy1 molecules in the plasmalemma of living fibroblasts by fluorescence video microscopy with nanometer scale precision. Membr. Biol. 144, 231–244 (1995)

    Google Scholar 

  42. Jacobs, R.E., Fraser, S.E.: Magnetic resonance microscopy of embryonic cell lineages and movements. Science 263(5147), 681–684 (1994)

    Article  Google Scholar 

  43. Khan, Z., Balch, T., Dellaert, F.: An MCMC-based particle filter for tracking multiple interacting targets. Technical report number GIT-GVU-03–35 (2003)

  44. Kitano, H.: Computational systems biology. Nature 420, 206–210 (2002)

    Article  Google Scholar 

  45. Koster, A.J., Klumperman, J.: Electron microscopy in cell biology: an integrated view on structure and function. Suppl. Nat. Rev. Mol. Cell Biol. (2003)

  46. Koster A.J., Grimm R., Typke D., Hegerl R., Stoschek A., Walz J., Baumeister,W.: Perspectives of molecular and cellular electron tomography. J. Struct. Biol. 120(3), 276–308 (1997)

    Article  Google Scholar 

  47. Kneen, M., Farinas, J., Verkman, A.S.: Green fluorescent protein as a noninvasive intracellular pH indicator. Biophys. J. 74, 1591–1599 (1998)

    Google Scholar 

  48. Kusumi, A., Sako, Y., Yamamoto, M.: Confined lateral diffusion of membrane receptors as studied by single particle tracking (Nanovidmicroscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophys. J. 65, 2021–2040 (1993)

    Google Scholar 

  49. Latecki, L.J., Lakamper, R., Eckhardt, U.: Shape descriptors for non-rigid shapes with a single closed contour. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 424–429 (2000)

  50. Lavallee, S., Szeliski, R.: Recovering the position and orientation of free-form objects from image contours using 3d distance maps. IEEE Trans. PAMI 17, 195–201 (1995)

    Google Scholar 

  51. Lee, G.M., Ishihara, A., Jacobson, K.: Direct observation of Brownian motion of lipids in membranes. Proc. Natl. Acad. Sci. USA 88, 6274–7278 (1991)

    Article  Google Scholar 

  52. Loew, L.M.: Voltage-sensitive dyes: measurement of membrane potentials induced by DC and AC electric fields. Bioelectromagnetics. supplement 1, 179–189 (1992)

    Google Scholar 

  53. Maddox, P.: An introduction to live cell fluorescence imaging (2000)

  54. Maintz, J.B.A., Viergever, M.A.: A survey of medical image registration. Medical image analysis. 2, 1–36 (1998)

    Google Scholar 

  55. May, M.: Advances in cellular image processing. The Scientist, 18(5), 40–43 (2004)

  56. Marshall, W.F., et al.: Interphase chromosomes undergo constrained diffusional motion in living cells. Curr. Biol. 7, 930–939 (1997)

    Article  Google Scholar 

  57. Mitiche, A., et al.: Computation and analysis of image motion: a synopsis of current problems and methods. Int. J. Comp. Vis. 19, 29–55 (1996)

    Article  Google Scholar 

  58. O’Toole, E.T., Winey, M.J., McIntosh, J.R., Mastronarde, D.N.: Electron tomography of yeast cells. Meth. Enzymol 351, 81–95 (2002)

    Google Scholar 

  59. Palmer, A., Cha, B., Wirtz, D.: Structure and dynamics of actin filament solutions in the presence of latrunculin A. J. Polym. Sci. Phys. Educ. 36, 3007–3015 (1998)

    Article  Google Scholar 

  60. Palmer, A., Xu, J., Kuo, S.C., Wirtz, D.: Diffusing wave spectroscopy microrheology of actin filament networks. Biophys. J. 76, 1063–1071 (1999)

    Google Scholar 

  61. Pedley, T.J., Kessler, J.O.: Hydrodynamic phenomena in suspensions of swimming microorganisms. Annu. Rev. Fluid Mech. 24, 313–358 (1992)

    Article  MathSciNet  Google Scholar 

  62. Perkins, G.A., Renken, C.W., van der Klei, I.J., Ellisman, M.H., Neupert, W., Frey, T.G.: Electron tomography of mitochondria after the arrest of protein import associated with Tom19 depletion. Eur. J. Cell Biol. 80(2), 139–150 (2001)

    Google Scholar 

  63. Periasamy, A.: Methods in Cellular Imaging. Oxford University Press, New York, 434 pp. (2001)

  64. Phair, R.D., Misteli, T.: Kinetic modelling approaches to in vivo imaging. Nat. Rev. Mol. Cell Biol. 2, 898–907 (2001)

    Article  Google Scholar 

  65. Piston, D.W., Patterson, G.H., Knobel, S.M.: Quantitative imaging of the green fluorescent protein (GFP). Methods Cell Biol. 58, 31–48 (1999)

    Article  Google Scholar 

  66. Qian, H., Sheetz, M.P., Elson, E.L.: Single particle tracking: analysis of diffusion and flow in two-dimensional systems. Biophys. J. 60, 910–921 (1991)

    Google Scholar 

  67. Qian, H.: Single-particle tracking: Brownian dynamics of visco-elastic materials. Biophys. J. 79, 137–143 (2000)

    Google Scholar 

  68. Rohr, K., Stiehl, H.S.: Characterization and Localization of Anatomical Landmarks in Medical Images. In: Hütter, B.O., Gilsbach, J.M. (eds), Proc. First Aachen Conf. on Neuropsychology in Neurosurgery, Psychiatry, and Neurology, Aachen, Germany, 9–12 (1997)

  69. Sako, Y., Kusumi, A.: Barriers for lateral diffusion of transferring receptor in the plasma membrane as characterized by receptor dragging by laser tweezers: fence versus tether. J. Cell Biol. 129, 1559–1574 (1995)

    Article  Google Scholar 

  70. Saxton, M.J.: Anomalous diffusion due to obstacles: a Monte Carlo study. Biophys. J. 66, 394 –401 (1994)

    Google Scholar 

  71. Saxton, M.J., Jacobson, K.: Single particle tracking: applications to membrane dynamics. Annu. Rev. Biophys. J. 26, 373–399 (1997)

    Article  Google Scholar 

  72. Sheng, J., Meng, H. (1998) A genetic algorithm particle pairing technique for 3D velocity field extraction in holographic particle image velocimetry. Exp. Fluids 25, 461–473

    Article  Google Scholar 

  73. Schultz, G.J., Schindler, H., Schmidt, T.: Single-molecule microscopy on model membranes reveals anomalous diffusion. Biophys. J. 73, 1073–1080 (1997)

    Google Scholar 

  74. Sekar, R.B., Periasamy, A.: Fluorescence resonance microscopy imaging of live cell protein localizations. J. Cell Biol. 160(5), 629–633 (2003)

    Google Scholar 

  75. Sheetz, M.P., Turney, S., Qian, H., Elson, E.L.: Nanometer-level analysis demonstrates that lipid flow does not drive membrane glycoprotein movement. Nature 340, 284–288 (1989)

    Article  Google Scholar 

  76. Singh, S., et al.: Multiple particle tracking for live cell imaging with green fluorescent protein (GFP) tagged videos. In: 3rd International Conference on Advances in Pattern Recognition (ICAPR’2005). Lecture Notes in Computer Science (LNCS). Springer, Bath (2005)

  77. Simson, R., Sheets, E.D., Jacobson, K. (1995) Detection of temporary lateral confinement of membrane proteins using single particle tracking. Biophys. J. 69, 989–993

    Google Scholar 

  78. Smith, C.B., Betz, W.J.: Simultaneous independent measurement of endo- and exocytosis. Nature 380, 531–534 (1996)

    Article  Google Scholar 

  79. Smolle, J., Helige, C., Tritthart, H.A.: An image analysis and statistical evaluation program for the assessment of tumour cell invasion in vitro. 4(1), 49–57 (1992)

  80. Soni, G.V., Ali, B.M.J., Hatwalney, Y., Shivashankar, G.V.: Single particle tracking of correlated bacterial dynamics. Biophys. J. 84, 2634 –2637 (2003)

    Google Scholar 

  81. Stephens, D.J., Allan, V.J.: Light microscopy techniques for live cell imaging. Science 300(5616), 82–86 (2003)

    Google Scholar 

  82. Tavare, J.M., Fletcher, L.M., Welsh, G.I.: Using green fluorescent protein to study intracellular signaling. J. Endocrinol 170, 297–306

  83. Terzopoulos, D., Metaxas, D.: Dynamic 3D models with local and global deformations: deformable superquadrics. IEEE Transactions on Pattern Analysis and Machine Intelligence. 13(7), 703–714 (1991)

    Google Scholar 

  84. Terzopoulos, D., McInerney, T.: Deformable models in medical images analysis: a survey. Medical Image Analysis. 1(2), 91--108 (1996)

    Google Scholar 

  85. Tseng, Y., Kole, T.P., Wirtz, D.: Micromechanical mapping of live cells by multiple-particle-tracking microrheology. Biophys. J. 83, 3162–3176 (2002)

    Google Scholar 

  86. Tseng, Y., Wirtz, D.: Mechanics and multiple-particle tracking micro-heterogeneity of a-actinin-cross-linked actin filament networks. Biophys. J. 81, 1643–1656 (2001)

    Article  Google Scholar 

  87. Tseng, Y., Kole, T.P., Lee, S.H.J., Wirtz, D.: Local dynamics and viscoelastic properties of cell biological systems. Curr. Opin. Colloid Interface Sci. 7, 210 –217 (2002)

    Article  Google Scholar 

  88. Tseng, Y., Wirtz, D.: Mechanics and multiple-particle tracking microhetrogeneity of alpha-actinin-cross-linked actin filament networks. Biophys. J. 81, 1643–1656 (2001)

    Google Scholar 

  89. Tsien, R.Y.: The green fluorescent protein. Annu Rev Biochem 67, 509–544 (1998)

    Article  Google Scholar 

  90. Valentine, M.T., Kaplan, P.D., Thota, D., Crocker, J.C., Gisler, T., Prudhomme, R.K., Beck, M., Weitz, D.A.: Investigating the microenvironments of inhomogeneous soft materials with multiple particle tracking. Phys. Rev. E 64(6), (2001)

  91. Vrljic, M., Nishinura, S.Y., Brasselet, S., Moerner, W.E., McConnell, H.M.: Translational diffusion of individual class II MHC membrane proteins in cells. Biophys. J. 83, 2681–2692 (2002)

    Google Scholar 

  92. Wang, Y., Silverman, J.D., Cao, L.: Single particles tracking of surface receptor movement during cell division. Cell Biol. 127, 963–971 (1994)

    Article  Google Scholar 

  93. Waterman-Storer, M.C.: Fluorescent Speckle Microscopy (FSM) of microtubules and actin in living cells. Curr. Protoc. Cell Biol. (2002)

  94. Waterman-Storer, M.C., Desai, A., Bulinski, C., Salmon, E.D.: Fluorescent speckle microscopy, a method to visualize the dynamics of protein assemblies in living cells. Curr. Biol. 61, 155–173 (1998)

    Google Scholar 

  95. White, N.S.: Visualization systems for multidimensional CLSM images. In: Handbook of Biological Confocal Microscopy. Plenum Press, New York (1995)

  96. Wilson, K.M., Morrison, I.E.G., Smith, P.R., Fernandez, N, Cherry, R.J.: Single particle tracking of cell-surface HLA-DR molecules using R-phycoerythrin labeled monoclonal antibodies and fluorescence digital imaging. J. Cell Sci. 109, 2101–2109 (1996)

    Google Scholar 

  97. Xu, J., Viasnoff, V., Wirtz, D.: Compliance of actin filament networks measured by particle-tracking microrheology and diffusing wave spectroscopy. Rheologica Acta 37, 387–398 (1998)

    Article  Google Scholar 

  98. Zia Khan, Tucker, R., Balch, Manuela M. Veloso: Automatically tracking and analyzing the behavior of live insect colonies. Agents, 521–528 (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sameer Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhaskar, H., Singh, S. Live cell imaging: a computational perspective. J Real-Time Image Proc 1, 195–212 (2007). https://doi.org/10.1007/s11554-007-0022-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-007-0022-4

Keywords

Navigation