Skip to main content
Log in

Network-driven low complexity coding for wireless multi-view video system

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

For wireless multi-view video system, which has very limited capability for storage and computation at the encoder, it is essential to design a video coding scheme with low complexity. Wyner-Ziv (WZ) coding scheme shifts large computational complexities to decoder with side information reconstruction, however, its encoding efficiency is not high enough. To obtain higher encoding efficiency and lower encoding complexity for wireless multi-view video applications, a network-driven low complexity video coding method is proposed in the paper. The proposed method is designed to implement color correction, motion vector extrapolation and disparity extraction at the central node of network, so as to reduce large computational complexities of motion estimation at the encoder and disparity estimation at the decoder. Experimental results show that encoding efficiency of the proposed method is higher than those of WZ coding and H.264 intraframe coding methods. The encoding complexity of the proposed method is greatly decreased and the decoded views are of color consistency, which is favorable to high quality view rendering at the decoder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Morvan, Y., Farin, D., de With, P.H.N.: System architecture for free-viewpoint video and 3D-TV. IEEE Trans. Consum. Electron. 54(2), 925–932 (2008). doi:10.1109/TCE.2008.4560180

    Article  Google Scholar 

  2. Ahmad, I.: Multi-view video: get ready for next-generation television. IEEE Distrib. Syst. Online 8(3), 1–6 (2007). doi:10.1109/MDSO.2007.13

    Article  Google Scholar 

  3. Pradipta, D., Sharma, S., Shuvalov, A., Chiueh, T.: WiVision: a wireless video system for real-time distribution and on-demand playback. In: Proceedings of IEEE Consumer Communication and Networking Conference, pp. 575–580 (2004)

  4. Wu, C., Aghajan, H., Kleihorst, R.: Real-time human posture reconstruction in wireless smart camera networks. In: Proceedings of International Information Processing in Sensor Networks, pp. 321–331 (2008)

  5. Zhang, Z.Y.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000). doi:10.1109/34.888718

    Article  Google Scholar 

  6. Zhang, H., Wong, K.Y., Zhang, G.Q.: Camera calibration for images of spheres. IEEE Trans. Pattern Anal. Mach. Intell. 29(3), 499–502 (2007). doi:10.1109/TPAMI.2007.45

    Article  MathSciNet  Google Scholar 

  7. Lee, S.H., Choi, J.S.: Design and implementation of color correction system for images captured by digital cameras. IEEE Trans. Consum. Electron. 54(2), 268–276 (2008). doi:10.1109/TCE.2008.4560085

    Article  Google Scholar 

  8. Yamamoto, K., Oi, R.: Color correction for multi-view video using energy minimization of view networks. Int. J. Autom. Comput. 5(3), 234–245 (2008). doi:10.1007/s11633-008-0234-5

    Article  Google Scholar 

  9. Shao, F., Jiang, G.Y., Yu, M.: New color correction method of multi-view images for view rendering in free-viewpoint television. WSEAS Trans. Comput. 7(5), 569–578 (2008)

    Google Scholar 

  10. Yamamoto, K., Kitahara, M., Kimata, H., Yendo, T., Fujii, T., Tanimoto, M., Shimizu, S., Kamikura, K., Yashima, Y.: Multiview video coding using view interpolation and color correction. IEEE Trans. Circuits Syst. Video Technol. 17(11), 1436–1449 (2007). doi:10.1109/TCSVT.2007.903802

    Article  Google Scholar 

  11. ISO/IEC JTC1/SC29/WG11: Multiview coding using AVC, MPEG2006/M12945, Bangkok, Thailand, January 2006

  12. Merkle, P., Smolic, A., Muller, K., Wiegand, T.: Efficient prediction structures for multiview video coding. IEEE Trans. Circuits. Syst. Video Technol. 17(11), 1461–1473 (2007). doi:10.1109/TCSVT.2007.903665

    Article  Google Scholar 

  13. Jin, Z.P., Yu, M., Jiang, G.Y., Chen, K., Yang, M., Jiang, Z.D.: Wyner-Ziv residual coding for wireless multi-view system. In: Proceedings of SPIE: Visual Communications and Image Processing, vol. 6508, p. 680825 (2007)

  14. Guo, X., Lu, Y., Wu, F., Zhao, D.B., Gao, W.: Wyner-Ziv-based multiview video coding. IEEE Trans. Circuits Syst. Video Technol. 18(6), 713–724 (2008). doi:10.1109/TCSVT.2008.920970

    Article  Google Scholar 

  15. Li, Z., Liu, L., Delp, E.: Rate distortion analysis of motion side estimation in Wyner-Ziv video coding. IEEE Trans. Image Process. 16(1), 98–113 (2007). doi:10.1109/TIP.2006.884934

    Article  MathSciNet  Google Scholar 

  16. Hur, J.H., Cho, S., Lee, Y.L.: Adaptive local illumination change compensation method for H.264-based multiview video coding. IEEE Trans. Circuits Syst. Video Technol. 17(11), 1496–1505 (2007). doi:10.1109/TCSVT.2007.903774

    Article  Google Scholar 

  17. Yang, Y., Yu, M., Jiang, G.Y., Peng, Z.J.: A transmission and interaction oriented free-viewpoint video system. Int. J. Circuits Syst. Signal Process. 1(4), 310–316 (2007)

    Google Scholar 

  18. Chang, Y.C., Reid, J.F.: RGB calibration for color image analysis in machine vision. IEEE Trans. Image Process. 5(10), 1414–1422 (1996). doi:10.1109/83.536890

    Article  Google Scholar 

  19. Jbilou, K., Sadok, H.: Vector extrapolation methods. Application and numerical comparison. J. Comput. Appl. Math. 122(1–2), 149–165 (2000). doi:10.1016/S0377-0427(00)00357-5

    Article  MATH  MathSciNet  Google Scholar 

  20. Petrovic, G., Farin, D., de With, P.H.N.: Toward 3D-IPTV: design and implementation of a stereoscopic and multiple-perspective video streaming system. In: Proceedings of SPIE-IS&T Electronic Imaging, vol. 6803, p. 680310. San Jose, California, USA (2008)

  21. ISO/IEC JTC1/SC29/WG11: KDDI multiview video sequences for MPEG 3DAV, MPEG2004/M10533, Munich, Germany, March 2004

  22. ISO/IEC JTC1/SC29/WG11: Description of Core Experiments in MVC, MPEG2006/W8019, Montreux, Switzerland, April 2006

  23. Luo, M.R., Cui, G., Rigg, B.: The development of the CIE2000 colour-difference formula: CIEDE2000. Color Res. Appl. 26(5), 340–350 (2001). doi:10.1002/col.1049

    Article  Google Scholar 

  24. Brooks, A.C., Zhao, Z.N., Pappas, T.N.: Structural similarity quality metrics in a coding context: exploring the space of realistic distortions. IEEE Trans. Image Process. 17(8), 1261–1273 (2008). doi:10.1109/TIP.2008.926161

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (grant 60872094, 60832003), 863 Project of China (2009AA01Z327), the Program for New Century Excellent Talents in University (NCET-06-0537), Natural Science Foundation of Ningbo (grant 2008A610016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gangyi Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shao, F., Jiang, G. & Yu, M. Network-driven low complexity coding for wireless multi-view video system. J Real-Time Image Proc 5, 33–43 (2010). https://doi.org/10.1007/s11554-009-0123-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-009-0123-3

Keywords

Navigation