Skip to main content
Log in

The secure wavelet transform

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

There has been an increasing concern for the security of multimedia transactions over real-time embedded systems. Partial and selective encryption schemes have been proposed in the research literature, but these schemes significantly increase the computation cost leading to tradeoffs in system latency, throughput, hardware requirements and power usage. In this paper, we propose a light-weight multimedia encryption strategy based on a modified discrete wavelet transform (DWT) which we refer to as the secure wavelet transform (SWT). The SWT provides joint multimedia encryption and compression by two modifications over the traditional DWT implementations: (a) parameterized construction of the DWT and (b) subband re-orientation for the wavelet decomposition. The SWT has rational coefficients which allow us to build a high throughput hardware implementation on fixed point arithmetic. We obtain a zero-overhead implementation on custom hardware. Furthermore, a Look-up table based reconfigurable implementation allows us to allocate the encryption key to the hardware at run-time. Direct implementation on Xilinx Virtex FPGA gave a clock frequency of 60 MHz while a reconfigurable multiplier based design gave a improved clock frequency of 114 MHz. The pipelined implementation of the SWT achieved a clock frequency of 240 MHz on a Xilinx Virtex-4 FPGA and met the timing constraint of 500 MHz on a standard cell realization using 45 nm CMOS technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ahmed, E., Rose, J.: The effect of LUT and cluster size on deep-submicron FPGA performance and density. IEEE Trans. VLSI Syst. 12(3), 288–298 (2004)

    Article  Google Scholar 

  2. Baugher, M., McGrew, D., Naslund, M., Carrara, E., Norrman, K.: The secure real-time transport protocol (srtp) (2004)

  3. Brachtl, M., Uhl, A., Dietl, W.: Key-dependency for a wavelet-based blind watermarking algorithm. In: Proceedings of ACM workshop on Multimedia and security (MM&Sec) 2004, pp 175–179. ACM, New York (2004). doi:10.1145/1022431.1022462

  4. Canvel, B., Hiltgen, A., Vaudenay, S., Vuagnoux, M.: Password interception in a SSL/TLS channel. In: The 23rd Annual International Cryptology Conference, CRYPTO ’03, vol 2729, pp 583–599 (2003)

  5. Cheng, C.C., Tseng, P.C., Chen, L.G.: Multimode embedded compression codec engine for power-aware video coding system. IEEE Trans. Circuits Syst. Video Technol. 19(2), 141–150 (2009). doi:10.1109/TCSVT.2008.2009250

  6. Cheng, H., Li, X.: Partial encryption of compressed images and videos. IEEE Trans. Signal Process. 48(8), 2439–2451 (2000). doi:10.1109/78.852023

    Google Scholar 

  7. Christopoulos, C., Skodras, A., Ebrahimi, T.: The JPEG2000 still image coding system: an overview. IEEE Trans. Consumer Electr. 46(4), 1103–1127 (2000)

    Article  Google Scholar 

  8. Engel, D., Uhl, A.: Parameterized biorthogonal wavelet lifting for lightweight JPEG 2000 transparent encryption. In: Proceedings of ACM workshop on Multimedia and security (MM&Sec) 2005, pp 63–70. ACM, New York (2005). doi:10.1145/1073170.1073183

  9. FIPS 197.: Announcing the Advanced Encryption Standard (2001)

  10. FIPS 46-2.: Announcing the standard for Data Encryption Standard (1993)

  11. Grangetto, M., Magli, E., Olmo, G.: Multimedia selective encryption by means of randomized arithmetic coding. IEEE Trans. Multimedia 8(5), 905–917 (2006)

    Article  Google Scholar 

  12. Hodjat, A., Verbauwhede, I.: A 21.54 Gbits/s fully pipelined AES processor on FPGA. In: Proceedings of IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM), pp 308–309 (2004). doi:10.1109/FCCM.2004.1

  13. Huang, C., Tseng, P., Chen, L.: Flipping structure: an efficient VLSI architecture for lifting-based discrete wavelet transform. IEEE Trans. Signal Process. 52(4), 1080–1089 (2004)

    Article  MathSciNet  Google Scholar 

  14. Jou, J.M., Shiau, Y.H., Liu, C.C.: Efficient VLSI architectures for the biorthogonal wavelet transform by filter bank and lifting scheme. IEEE Int. Symp. Circuits Syst. 2, 529–532 (2001). doi:10.1109/ISCAS.2001.921124

  15. Kim, H., Wen, J., Villasenor, J.: Secure arithmetic coding. IEEE Trans. Signal Process. 55(5), 2263–2272 (2007). doi:10.1109/TSP.2007.892710

    Google Scholar 

  16. Lai, X., Massey, J.L.: A proposal for a new Block Encryption Standard. In: EUROCRYPT ’90, pp 389–404. Springer, New York

  17. Lian, S., Wang, Z.: Comparison of several wavelet coefficient confusion methods applied in multimedia encryption. In: International Conference on Computer Networks and Mobile Computing, pp 372–376 (2003)

  18. Lian, S., Liu, Z., Ren, Z., Wang, H.: Commutative encryption and watermarking in video compression. IEEE Trans. Circuits Syst. Video Technol. 17(6), 774–778 (2007)

    Article  Google Scholar 

  19. Liu, X., Eskicioglu, A.M.: Selective encryption of multimedia content in distribution networks: challenges and new directions. In: Communications, Internet, and Information Technology (CIIT 2003), pp 276–285 (2003)

  20. Liu, Z., Zheng, N.: Parametrization construction of biorthogonal wavelet filter banks for image coding. Signal Image Video Process. 1(1), 63–76 (2007)

    Article  Google Scholar 

  21. Mano, M.M., Ciletti, M.D.: Digital Design, 4th edn. Prentice-Hall Inc. Upper Saddle River (2006)

    Google Scholar 

  22. Mao, Y., Wu, M.: A joint signal processing and cryptographic approach to multimedia encryption. IEEE Trans. Image Process. 15(7), 2061–2075 (2006)

    Article  Google Scholar 

  23. Marcellin, M., Bilgin, A.: Quantifying the parent-child coding gain in zero-tree-based coders. IEEE Signal Process. Lett. 8(3), 67–69 (2001). doi:10.1109/97.905942

  24. Martin, K., Plataniotis, K.: Privacy protected surveillance using secure visual object coding. IEEE Trans. Circuits Syst. Video Technol. 18(8), 1152–1162 (2008)

    Article  Google Scholar 

  25. Martina, M., Masera, G.: Multiplierless, folded 9/7–5/3 wavelet VLSI architecture. IEEE Trans. Circuits Syst. II 54(9), 770–774 (2007)

    Article  Google Scholar 

  26. Pande, A., Zambreno, J.: An efficient hardware architecture for multimedia encryption and authentication using discrete wavelet transform. In: IEEE CS International Symposium VLSI, pp 85–90 (2009)

  27. Pande, A., Zambreno, J.: Poly-dwt: polymorphic wavelet hardware support for dynamic image compression. ACM Trans. Embed. Comput. Syst. (2010a)

  28. Pande, A., Zambreno, J.: A reconfigurable architecture for secure multimedia delivery. In: 23rd Intl. Conf. VLSI Design, pp 258–263, (2010b). http://www.computer.org/portal/web/csdl/doi/10.1109/VLSI.Design.2010.50

  29. Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28, 656–715 (1949)

    MathSciNet  MATH  Google Scholar 

  30. Stine, J., Castellanos, I., Wood, M., Henson, J., Love, F., Davis, W., Franzon, P., Bucher, M., Basavarajaiah, S., Oh, J., Jenkal, R.: FreePDK: an open-source variation-aware design kit, pp i–iii (2007). doi:10.1109/MSE.2007.3

  31. Strang, G., Nguyen, T.: Wavelets and Filter Bank. Wellesley-Cambridge Press, Wellesley (1996)

  32. Tseng, P., Chang, Y., Huang, Y., Fang, H., Huang, C., Chen, L.: Advances in hardware architectures for image and video coding—a survey. In: Proceedings of IEEE, vol. 93, issue 1, pp. 184–197 (2005). doi:10.1109/JPROC.2004.839622

  33. Vishwanath, M., Owens, R., Irwin, M.: VLSI architectures for the discrete wavelet transform. In: IEEE Trans Circuits and Systems II: Analog and Digital Signal Processing, vol. 42, issue 5, pp 305–316 (1995). doi:10.1109/82.386170

  34. Wagner, D., Schneier, B.: Analysis of the SSL 3.0 protocol. In: Proceedings of Second UNIX Work. Electronic Commerce, USENIX Association, pp 29–40 (1996)

  35. Wang, S.J., Chen, H.H., Chen, P.Y., Tsai, Y.R.: Security cryptanalysis in high-order improved fast encryption algorithm for multimedia. In: Future Generation Communication and Networking (FGCN 2007), vol 1, pp 328–331 (2007). doi:10.1109/FGCN.2007.199

  36. Yi, X., Tan, C.H., Slew, C.K., Rahman Syed, M.: Fast encryption for multimedia. In: IEEE Transactions on Consumer Electronics, vol. 47, issue 1, pp 101–107 (2001). doi:10.1109/30.920426

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Pande.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pande, A., Zambreno, J. The secure wavelet transform. J Real-Time Image Proc 7, 131–142 (2012). https://doi.org/10.1007/s11554-010-0165-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-010-0165-6

Keywords

Navigation