Skip to main content
Log in

VLSI implementation of star detection and centroid calculation algorithms for star tracking applications

  • Special Issue
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

Nowadays, hardware implementation of image and video processing algorithms on application specific integrated circuit (ASIC) has become a viable target in many applications. Star tracking algorithm is commonly used in space missions to recover the attitude of the satellite or spaceship. The algorithm matches stars of the satellite camera with the stars in a catalog to calculate the camera orientation (attitude). The number of stars in the catalog has the major impact on the accuracy of the star tracking algorithm. However, the higher number of stars in the catalog increases the computation burden and decreases the update rate of the algorithm. Hardware implementation of the star tracking algorithm using parallel and pipelined architecture is a proper solution to ensure higher accuracy as well as higher update rate. Noise filtering and also the detection of stars and their centroids in the camera image are the main stages in most of the star tracking algorithms. In this paper, we propose a new hardware architecture for star detection and centroid calculation in star tracking applications. The method contains several stages, including noise smoothing with fast Gaussian and median filters, connected component labeling, and centroid calculation. We introduce a new and fast algorithm for star labeling and centroid calculation that needs only one scan of the input image.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Accardo, D., Rufino, G.: Brightness-independent start-up routine for star trackers. IEEE Trans Aerosp Electron Syst 38(3), 813–823 (2002)

    Article  Google Scholar 

  2. Lamy, Au, Rousseau, G., Bostel, J., Mazari, B.: Star recognition algorithm for APS star tracker: oriented triangles. IEEE Aerosp Electron Syst Mag 20(2), 27–31 (2005)

    Article  Google Scholar 

  3. Steyn, W., Jacobs, M., Oosthuizen, P.: A high performance star sensor system for full attitude determination on a microsatellite. In: Workshop on Control of Small Spacecraft at the 1997 Annual AAS Guidance and Control Conference, Breckenridge, CO, USA (1997)

  4. Kolomenkin, M., Pollak, S., Shimshoni, I., Lindenbaum, M.: Geometric voting algorithm for star trackers. IEEE Trans Aerosp Electron Syst 44(2), 441–456 (2008)

    Article  Google Scholar 

  5. Clouse, D.S., Padgett, C.W.: Small field-of-view star identification using bayesian decision theory. IEEE Trans Aerosp Electron Syst 36(3), 773–783 (2000)

    Article  Google Scholar 

  6. Lee, H., Oh, C.S., Bang, H.: Modified grid algorithm for star pattern identification by using star trackers. In: IEEE International Conference on Recent Advances in Space Technologies (RAST ‘03), Daejon, South Korea, pp. 385–391. (2003)

  7. Juang, J.N., Kim, H.Y., Junkins, J.L.: An efficient and robust singular value method for star pattern recognition and attitude determination. J Astronaut Sci 52(1), 211–220 (2004)

    Google Scholar 

  8. Kim, H.Y., Junkins, J.L.: Self-organizing guide star selection algorithm for star trackers: thinning method. In: IEEE Aerospace Conference Proceedings, TX, USA, pp. 2275–2283 (2002)

  9. Zhang, C., Chen, C., Shen, X.: A new guide star selection algorithm for star tracker. In: World, Fifth (ed.) Congress on Intelligent Control and Automation (WCICA 2004), pp. 5445–5449. China, Wuhan (2004)

    Google Scholar 

  10. Mahalingam, V., Bhattacharya, K., Ranganathan, N., Chakravarthula, H., Murphy, R.R., Pratt, K.S.: A VLSI architecture and algorithm for Lucas–Kanade-Based optical flow computation. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 18(1), 29–38 (2010)

    Google Scholar 

  11. Wahid, K., Martuza, M., Das, M., McCrosky, C.: Efficient hardware implementation of 8 × 8 integer cosine transforms for multiple video codecs. J. Real-Time Image Process, 1–8 (2011). doi:10.1007/s11554-011-0209-6

  12. Hopkinson, G., Dale, C., Marshall, P.: Proton effects in charge-coupled devices. IEEE Trans Nucl Sci 43(2), 614–627 (1996)

    Article  Google Scholar 

  13. Maheshwari, R., Rao, S.S.S.P., Poonacha, P.G.: FPGA implementation of median filter. In: IEEE Tenth International Conference on VLSI Design, Hyderabad, India, 4–7 Jan 1997, pp. 523–524 (1997)

  14. Hu, Y., Ji, H.: Research on image median filtering algorithm and its FPGA implementation. In: IEEE WRI Global Congress on Intelligent Systems (GCIS ‘09) Shanghai, China 2009, pp. 226–230

  15. Vega-Rodríguez, M.A., Sánchez-Pérez, J.M., Gómez-Pulido, J.A.: An FPGA-based implementation for median filter meeting the real-time requirements of automated visual inspection systems. In: Proceedings of the 10th Mediterranean Conference on Control and Automation, Lisbon, Portugal, Citeseer (2002)

  16. He, L., Chao, Y., Suzuki, K., Wu, K.: Fast connected-component labeling. Pattern Recogn 42(9), 1977–1987 (2009)

    Article  MATH  Google Scholar 

  17. AbuBaker, A., Qahwaji, R., Ipson, S., Saleh, M.: One scan connected component labeling technique. In: IEEE International Conference on Signal Processing and Communications (ICSPC 2007), Dubai, pp. 1283–1286 (2007)

  18. Flatt, H., Blume, S., Hesselbarth, S., Schunemann, T., Pirsch, P.: A parallel hardware architecture for connected component labeling based on fast label merging. In: IEEE International Conference on Application-Specific Systems, Architectures and Processors (ASAP 2008) Hannover, Appelstr, pp. 144–149 (2008)

  19. Ito, Y., Nakano, K.: Optimized component labeling algorithm for using in medium sized FPGAs. In: Ninth International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT 2008), Higashi-Hiroshima, pp. 171–176 (2008)

  20. Jiang, J., Zhang, G., Wei, X., Li, X.: Rapid star tracking algorithm for star sensor. IEEE Aerosp Electron Syst Mag 24(9), 23–33 (2009)

    Article  Google Scholar 

  21. Cohen, H.A.: Parallel algorithm for gray-scale image segmentation. In: IEEE Australian and New Zealand Conference on Ligent Information Systems, Adelaide, SA, 18–20 November 1996, pp. 143–146 (1996)

  22. Hao, X., Jiang, J., Zhang, G.: Star sensor image acquisition and preprocessing hardware system based on CMOS image sensor and FGPA. Proc. SPIE 5253, 207–210 (2003)

    Article  Google Scholar 

  23. Obermann, S.F., Flynn, M.J.: Division algorithms and implementations. IEEE Trans Comput 46(8), 833–854 (1997)

    Article  MathSciNet  Google Scholar 

  24. Sorokin, N.: Implementation of high-speed fixed-point dividers on FPGA. J Comput Sci Technol 6(1), 8–11 (2006)

    Google Scholar 

  25. Khorbotly, S., Hassan, F.: A modified approximation of 2D Gaussian smoothing filters for fixed-point platforms. In: IEEE 43rd Southeastern Symposium on System Theory (SSST), Auburn, USA, March 14-17, pp. 151–159 (2011)

  26. Laher, R., Catanzarite, J., Conrow, T., Correll, T., Chen, R., Everett, D., Shupe, D., Lonsdale, C., Hacking, P., Gautier, N., Lebsock, K.: Attitude control system and star-tracker performance of the Wide-field Infrared Explorer spacecraft. In: Paper AAS 00-146, Proceedings of the 2000 AAS/AIAA Spaceflight Mechanics Meeting Clearwater, FL, January 23–26 (2000)

  27. Liebe, C.C.: Accuracy performance of star trackers-a tutorial. IEEE Trans Aerosp Electron Syst 38(2), 587–599 (2002)

    Article  Google Scholar 

  28. Gokhale, M., Graham, P.S.: Reconfigurable computing: accelerating computation with field-programmable gate arrays, p. 93. Springer, Berlin (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Behrad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azizabadi, M., Behrad, A. & Ghaznavi-Ghoushchi, M.B. VLSI implementation of star detection and centroid calculation algorithms for star tracking applications. J Real-Time Image Proc 9, 127–140 (2014). https://doi.org/10.1007/s11554-012-0285-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-012-0285-2

Keywords

Navigation