Skip to main content
Log in

Lightweight real-time error-resilient encoding of visual sensor data

  • Special Issue Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

Extremely low-resolution video still proves suitable for many video interpretation methods and therefore may be used in small, low-cost and low-power visual sensors. Although some image analysis algorithms can be performed at the sensor node, collecting multiple video streams at the server side is necessary to execute many advanced video-based applications. Thus, an error-resilient video codec is a key component of every wireless visual sensor network. This paper introduces a novel end-to-end video compression and transmission system for such sensor networks. In the proposed framework, high-performance video coding techniques are employed, while maintaining the complexity of the encoder at the minimum. The produced bitstream is protected against wireless network errors by forward error correction codes and a row–column bit interleaver. Experimental results show that proposed codec performs close to H.264/AVC, at only a small fraction of its encoding time and offers robustness against transmission errors in various network conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. The High Profile of the H.264/AVC standard is selected since it supports monochrome coding.

  2. In this evaluation we used a linear congruential generator, as implemented in rand48 library.

References

  1. Bjøntegaard, G.: Calculation of average PSNR difference between RD-curves. Technical Report VCEG-M33, ITU-T SG16/Q6, Austin (2001)

  2. ITU-U, ISO/IEC JTC 1: Advanced video coding for generic audiovisual services (including SVC extension). Technical Report E-80000, ISO/IEC 14496-10, Lausanne (2007)

  3. Akyildiz, I., Melodia, T., Chowdhury, K.: A survey on wireless multimedia sensor networks. Comput. Netw. 51(4), 921–960 (2007)

    Article  Google Scholar 

  4. Artigas, X., Ascenso, J., Dalai, M., Klomp, S., Kubasov, D., Ouaret, M.: The DISCOVER codec: architecture, techniques and evaluation. In: Picture Coding Symposium (PCS) (2007)

  5. Camilli, M., Kleihorst, R.: Mouse sensor networks, the smart camera. In: Proceedings of the ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC), pp. 1–3 (2011)

  6. Chen, W., Verbist, F., Deligiannis, N., Schelkens, P., Munteanu, A.: Efficient intra-frame video coding for low resolution wireless visual sensors. In: Proceedings of the ACM/IEEE International Conference on Digital Signal Processing (DSP), pp. 1–6 (2013)

  7. Deligiannis, N., Verbist, F., Iossifides, A., Slowack, J., Van de Walle, R., Schelkens, P., Munteanu, A.: Wyner–Ziv video coding for wireless lightweight multimedia applications. EURASIP J. Wirel. Commun. Netw. 2012(1), 106 (2012)

    Article  Google Scholar 

  8. Dhondt, Y., Lambert, P., Van De Walle, R.: A flexible macroblock scheme for unequal error protection. In: Image Processing, 2006 IEEE International Conference, pp. 829–832 (2006)

  9. Gallager, R.: Low-density parity-check codes. Inf. Theory IRE Trans. 8(1), 21–28 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  10. Girod, B., Aaron, A., Rane, S., Rebollo-Monedero, D.: Distributed video coding. Proc. IEEE 93(1), 71–83 (2005)

    Article  MATH  Google Scholar 

  11. Grünwedel, S., Jelaca, V., Van Hese, P., Kleihorst, R., Philips, W.: Multi-view occupancy maps using a network of low resolution visual sensors. In: Proceedings of the ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC) (2011)

  12. Hanca, J., Verbist, F., Deligiannis, N., Kleihorst, R., Munteanu, A.: Demo: Depth estimation for 1k-pixel stereo visual sensors. In: Distributed Smart Cameras (ICDSC), 2013 Seventh ACM/IEEE International Conference, pp. 1–6 (2013)

  13. Hu, X.Y., Eleftheriou, E., Arnold, D.M.: Regular and irregular progressive edge-growth tanner graphs. Inf. Theory IEEE Trans. 51(1), 386–398 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Institute, E.E.T.S.: Electromagnetic compatibility and radio spectrum matters (erm); electromagnetic compatibility (emc) standard for radio equipment and services; part 3: specific conditions for short-range devices (srd) operating on frequencies between 9 khz and 40 ghz. Technical Report ETSI EN 301 489-3 (2002)

  15. Ji, H.M.: IEEE International Conference on. An optimized processor for fast reed-solomon encoding and decoding. In: Acoustics, Speech, and Signal Processing (ICASSP), vol. 3, pp. 3097–3100 (2002)

  16. Kleihorst, R.: Silicam IGO website. http://www.silicam.org. Accessed 2 Sept 2014

  17. Kumar, S., Xu, L., Mandal, M.K., Panchanathan, S.: Error resiliency schemes in H.264/AVC standard. J. Vis. Commun. Image Represent. 17(2), 425–450 (2006) (introduction: special Issue on emerging H.264/AVC video coding standard)

  18. Lin, S., Costello, D.J.: Error Control Coding, 2nd edn. Prentice-Hall Inc., Upper Saddle River (2004)

    MATH  Google Scholar 

  19. Luby, M.G., Mitzenmacher, M., Shokrollahi, M.A., Spielman, D.A., Stemann, V.: Practical loss-resilient codes. In: Proceedings of the Twenty-ninth Annual ACM Symposium on Theory of Computing, pp. 150–159. ACM, New York (1997)

  20. Naderi, M.Y., Rabiee, H.R., Khansari, M., Salehi, M.: Error control for multimedia communications in wireless sensor networks: a comparative performance analysis. Ad Hoc Netw. 10(6), 1028–1042 (2012)

    Article  Google Scholar 

  21. Pennebaker, W.B., Mitchell, J.L.: JPEG still image data compression standard. Springer, p. 291 (1993) ISBN 978-0-442-01272-4

  22. Puri, R., Majumdar, A., Ramchandran, K.: Prism: a video coding paradigm with motion estimation at the decoder. Image Process. IEEE Trans. 16(10), 2436–2448 (2007)

    Article  MathSciNet  Google Scholar 

  23. Richardson, T., Urbanke., R.: Modern Coding Theory. Cambridge University Press, New York (2008) ISBN 978-0-521-85229-6

  24. Salama, P., Shroff, N., Delp, E.: Error concealment in MPEG video streams over atm networks. Sel Areas Commun IEEE J 18(6), 1129–1144 (2000)

    Article  Google Scholar 

  25. Stockhammer, T., Bystrom, M.: H.264/AVC data partitioning for mobile video communication. In: Image Processing, 2004. ICIP ’04. 2004 International Conference, vol. 1, pp. 545–548 (2004)

  26. Stoufs, M., Munteanu, A., Cornelis, J., Schelkens, P.: Scalable joint source-channel coding for the scalable extension of H.264/AVC. In: Circuits and Systems for Video Technology IEEE Transactions, vol. 18(12), pp. 1657–1670 (2008)

  27. Sühring, K.: H.264/AVC reference software website. http://iphome.hhi.de/suehring/tml/download/. Accessed 2 Sept 2014

  28. Sullivan, G., Ohm, J., Han, W.J., Wiegand, T.: Overview of the high efficiency video coding (HEVC) standard. Circuits Syst. Video Technol. IEEE Trans. 22(12), 1649–1668 (2012)

    Article  Google Scholar 

  29. Thomos, N., Argyropoulos, S., Boulgouris, N.V., Strintzis, M.G.: Robust transmission of H.264/AVC streams using adaptive group slicing and unequal error protection. EURASIP J. Appl. Signal Process. 2006, 120–128 (2006)

    Article  Google Scholar 

  30. Tian, X., Le, T.M., Lian, Y.: Entropy Coders of the H.264/AVC Standard, Review of CAVLC, Arithmetic Coding, and CABAC, Signals and Communication Technology. Springer, Heidelberg (2011)

  31. Verbist, F., Deligiannis, N., Chen, W., Schelkens, P., Munteanu, A.: Transform-domain Wyner–Ziv video coding for 1k-pixel visual sensors. In: Proceedings of the ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC), pp. 1–6 (2013)

  32. Verbist, F., Deligiannis, N., Satti, S., Schelkens, P., Munteanu, A.: Encoder-driven rate control and mode decision for distributed video coding. EURASIP J. Adv. Signal Process. 2013(1), 156 (2013)

    Article  Google Scholar 

  33. Wenger, S.: H.264/AVC over IP. IEEE Trans Circuits Syst. Video Technol. 13(7), 645–656 (2003)

  34. Wiegand, T., Sullivan, G.J., Bjontegaard, G., Luthra, A.: Overview of the H.264/AVC video coding standard. IEEE Trans. Circuits Syst. Video Technol. 13(7), 560–576 (2003)

    Article  Google Scholar 

  35. Wu, H., Abouzeid, A.A.: Error resilient image transport in wireless sensor networks. Comput. Netw. 50(15), 2873–2887 (2006)

    Article  MATH  Google Scholar 

  36. Wyner, A.D., Ziv, J.: The rate-distortion function for source coding with side information at the decoder. IEEE Trans. Inf. Theory 22(1), 1–10 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhang, X., Peng, X., Fowler, S., Wu, D.: Robust H.264/AVC video transmission using data partitioning and unequal loss protection. In: Computer and Information Technology (CIT), 2010 IEEE 10th International Conference, pp. 2471–2477 (2010)

Download references

Acknowledgments

This work is a part of the iMinds ICON project “Little Sister: low cost monitoring for care and retail” with additional support from the Flemish Institute for the Promotion of Innovation by Science and Technology (IWT) Ph.D. Grant No. 111014 of Jan Hanca and Flemish Research Foundation (FWO) project G017712N. We would like to thank Richard Kleihorst and Marco Camilli for providing support on the sensor’s [16] firmware.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Hanca.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanca, J., Braeckman, G., Munteanu, A. et al. Lightweight real-time error-resilient encoding of visual sensor data. J Real-Time Image Proc 12, 775–789 (2016). https://doi.org/10.1007/s11554-014-0448-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-014-0448-4

Keywords

Navigation