Skip to main content
Log in

Fast prototyping of a SoC-based smart-camera: a real-time fall detection case study

  • Special Issue Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

Smart camera, i.e. cameras that are able to acquire and process images in real-time, is a typical example of the new embedded computer vision systems. A key example of application is automatic fall detection, which can be useful for helping elderly people in daily life. In this paper, we propose a methodology for development and fast-prototyping of a fall detection system based on such a smart camera, which allows to reduce the development time compared to standard approaches. Founded on a supervised classification approach, we propose a HW/SW implementation to detect falls in a home environment using a single camera and an optimized descriptor adapted to real-time tasks. This heterogeneous implementation is based on Xilinx’s system-on-chip named Zynq. The main contributions of this work are (i) the proposal of a co-design methodology. These methodologies enable the HW/SW partitioning to be delayed using high-level algorithmic description and high-level synthesis tools. Our approach enables fast prototyping which allows fast architecture exploration and optimisation to be performed, (ii) the design of a hardware accelerator dedicated to boosting-based classification, which is a very popular and efficient algorithm used in image analysis, (iii) the proposal of fall-detection embedded in a smart camera and enabling integration into the elderly people environment. Performances of our system are finally compared to the state-of-the-art.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Algorithm 1
Fig. 7

Similar content being viewed by others

References

  1. (2006) Trimedia technologies. http://www.trimedia.com

  2. (2013) Data set fall detection. http://le2i.cnrs.fr/Fall-detection-Dataset

  3. (2013) Zynq-7000 all programmable soc overview. http://www.xilinx.com

  4. (2014) Boosting references. http://www.boosting.org/publications

  5. (2014) Matrix vision. http://www.matrix-vision.com

  6. (2014) Zc702 evaluation board for the zynq-7000 xc7z020 all programmable soc. http://www.xilinx.com

  7. Anders, J., Mefenza, M., Bobda, C., Yonga, F., Aklah, Z., Gunn, K.: A hardware/software prototyping system for driving assistance investigations. J Real Time Image Process 1, 1–11 (2013). doi:10.1007/s11554-013-0351-4

    Google Scholar 

  8. Chang, C., Lin, C.: LIBSVM: A library for support vector machines. ACM Trans Intell Syst Technol 2(27), 1–27 (2011), software available at http://www.csie.ntu.edu.tw/cjlin/libsvm

  9. Charfi, I., Miteran, J., Dubois, J., Atri, M., Tourki, R.: Optimized spatio-temporal descriptors for real-time fall detection: comparison of support vector machine and adaboost-based classification. J. Electron. Imaging 22(4), 041, 106–041,106 (2013). doi:10.1117/1.JEI.22.4.041106

  10. Diraco, G., Leone, A., Siciliano, P.: An active vision system for fall detection and posture recognition in elderly healthcare. In: Design, Automation Test in Europe Conference Exhibition (DATE), pp. 1536–1541 (2010). doi:10.1109/DATE.2010.5457055.

  11. Elhamzi, W., Dubois, J., Miteran, J., Atri, M.: An efficient low-cost fpga implementation of a configurable motion estimation for h.264 video coding. J Real Time Image Process 9(1), 19–30 (2014). doi:10.1007/s11554-012-0274-5

    Article  Google Scholar 

  12. Fleck, S., Strasser, W.: Smart camera based monitoring system and its application to assisted living. Proc IEEE 96(10), 1698–1714 (2008). doi:10.1109/JPROC.2008.928765

    Article  Google Scholar 

  13. Fleck, S., Lanwer, S., Straßer, W.: A smart camera approach to real-time tracking. In: 13th European Signal Processing Conference (EUSIPCO), pp. 4–8 (2005)

  14. Foroughi, H., Rezvanian, A., Paziraee, A.: Robust fall detection using human shape and multi-class support vector machine. In: Sixth Indian Conference on Computer Vision, Graphics and Image Processing, pp. 413–420 (2008)

  15. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. ICML 96, 148–156 (1996)

    Google Scholar 

  16. Hazelhoff, L., Han, J., With, P.H.: Video-based fall detection in the home using principal component analysis. In: Blanc-Talon, J., Bourennane, S., Philips, W., Popescu, D., Scheunders, P. (eds.) Advanced Concepts for Intelligent Vision Systems. Lecture Notes in Computer Science, vol. 5259. Springer, Berlin, Heidelberg (2008)

    Chapter  Google Scholar 

  17. Kawatsu, C., Li, J., Chung, C.: Development of a fall detection system with microsoft kinect. In: Kim, J.H., Matson, E.T., Myung, H., Xu, P. (eds.) Robot Intelligence Technology and Applications 2012. Advances in Intelligent Systems and Computing, vol. 208. Springer, Berlin, Heidelberg (2013)

    Chapter  Google Scholar 

  18. Khan, M., Habib, H.: Video analytic for fall detection from shape features and motion gradients. Lect Notes Eng Comput Sci 2179, 1311–1316 (2009)

    Google Scholar 

  19. Kleihorst, R., Abbo, A., van der Avoird, A., op de Beeck, M.J.R., Sevat, L., Wielage, P., van Veen, R., van Herten, H.: Xetal: a low-power high-performance smart camera processor. In: IEEE International Symposium on Circuits and Systems, ISCAS 2001. vol. 5, pp. 215–218 (2001). doi:10.1109/ISCAS.2001.922023

  20. Kleihorst, R., Abbo, A., Schueler, B., Danilin, A.: Camera mote with a high-performance parallel processor for real-time frame-based video processing. In: IEEE Conference on Advanced Video and Signal Based Surveillance, AVSS 2007, pp 69–74 (2007). doi:10.1109/AVSS.2007.4425288

  21. Leone, A., Diraco, G., Siciliano, P.: Detecting falls with 3d range camera in ambient assisted living applications: a preliminary study. Med Eng Phys 33(6), 770–781 (2011)

    Article  Google Scholar 

  22. Liao, Y., Huang, C., Hsu, S.: Slip and fall event detection using bayesian belief network. Pattern Recognit. 45, 24–32 (2012)

    Article  Google Scholar 

  23. Liu, C., Lee, C., Lin, P.M.: A fall detection system using k-nearest neighbor classifier. Expert Syst. Appl. 37, 7174–7181 (2010)

    Article  Google Scholar 

  24. Miaou, S.G., Sung, P.H., Huang, C.Y.: A customized human fall detection system using omni-camera images and personal information. In: 1st Transdisciplinary Conference on Distributed Diagnosis and Home Healthcare, D2H2. pp 39–42 (2006). doi:10.1109/DDHH.2006.1624792

  25. Miteran, J., Matas, E.B.J., Paindavoine, M., Dubois, J.: Automatic hardware implementation tool for a discrete adaboost-based decision algorithm. EURASIP J Appl Signal Process 7, 1035–1046 (2005)

    Article  MATH  Google Scholar 

  26. Mosqueron, R., Dubois, J., Paindavoine, M.: High-speed smart camera with high resolution. EURASIP J. Embed. Syst. 1, 23 (2007). doi:10.1155/2007/24163

    Google Scholar 

  27. Mosqueron, R., Dubois, J., Mattavelli, M., Mauvilet, D.: Smart camera based on embedded HW/SW coprocessor. EURASIP J. Embed. Syst. 2008, 3 (2008)

    Article  Google Scholar 

  28. Mubashir, M., Shao, L., Seed, L.: A survey on fall detection: Principles and approaches. Neurocomputing 100, 144–152. doi:10.1016/j.neucom.2011.09.037. http://www.sciencedirect.com/science/article/pii/S0925231212003153, special issue: Behaviours in video

  29. Nait-Charif, H., McKenna, S.: Activity summarisation and fall detection in a supportive home environment. In: Proceedings of the Pattern Recognition, 17th International Conference on (ICPR’04), IEEE Computer Society, Washington, DC, USA, ICPR ’04, pp 323–326 (2004). doi:10.1109/ICPR.2004.127

  30. Ong, P.S., Chang, Y.C., Ooi, C.P., Karuppiah, E.K., Tahir, S.M.: An FPGA implementation of intelligent visual based fall detection. Int. J. Comput. Inf. Sci. Eng. 7(2) (2013).

  31. Pedre, S., Krajnk, T., Todorovich, E., Borensztejn, P.: Accelerating embedded image processing for real time: a case study. J Real Time Image Process, 1–26 (2013). doi:10.1007/s11554-013-0353-2

  32. For Research C, of Injuries-CEREPRI P (2004) Fact sheet: Prevention of Falls among Elderly. Europeen Network for Safety among Elderly, http://www.euroipn.org/eunese/factsheets.htm

  33. Rougier, C., Meunier, J., St-Arnaud, A., Rousseau, J.: Robust video surveillance for fall detection based on human shape deformation. IEEE Trans Circuits Syst Video Technol 21, 611–622 (2011)

    Article  Google Scholar 

  34. Rougier, C., Meunier, J., St-Arnaud, A., Rousseau, J.: 3D head tracking for fall detection using a single calibrated camera. Image Vis. Comput. 31(3), 246–254 (2012)

    Article  Google Scholar 

  35. Senouci, B., Bouchhima, A., Rousseau, F., Petrot, F., Jerraya, A.: Prototyping multiprocessor system-on-chip applications: a platform-based approach. Distrib. Syst. Online IEEE 8(5), 2 (2007). doi:10.1109/MDSO.2007.28

    Article  Google Scholar 

  36. de Souza, F.D.M., Chez, G.C., do Valle Jr, E.A., de Albuquerque Arajo, A.: Violence detection in video using spatio-temporal features. In: SIBGRAPI’10, pp. 224–230 (2010)

  37. Vapnik, V. (ed) The Nature of Statistical Learning Theory, Springer-Verlag, Berlin (1995).

  38. Velez, G., Corts, A., Nieto, M., Vlez, I., Otaegui, O.: A reconfigurable embedded vision system for advanced driver assistance. J. Real Time Image Process. 1–15 (2014). doi:10.1007/s11554-014-0412-3

  39. Viola, P., Jones, M.: Robust real time face detection. Int. J. Comput. Vis. 57(2), 137–154 (2004)

    Article  Google Scholar 

  40. Viola, P., Jones, M.J., Snow, D.: Detecting pedestrians using patterns of motion and appearance. Int. J. Comput. Vis. 63(2), 153–161 (2005). doi:10.1007/s11263-005-6644-8

    Article  Google Scholar 

  41. Vishwakarma, V., Mandal, C., Sural, S.: Automatic detection of human fall in video. In: Proceedings of the 2nd international conference on Pattern recognition and machine intelligence, Springer-Verlag, Berlin, Heidelberg, PReMI’07, pp. 616–623 (2007). http://dl.acm.org/citation.cfm?id=1781034.1781119

  42. Wolf, W., Ozer, B., Lv, T.: Smart cameras as embedded systems. Computer 35(9), 48–53 (2002). doi:10.1109/MC.2002.1033027

    Article  Google Scholar 

  43. Youssef, M.W., Yoo, S., Sasongko, A., Paviot, Y., Jerraya, A.A.: Debugging hw/sw interface for mpsoc: video encoder system design case study. In: Proceedings of the 41st Annual Design Automation Conference, ACM, New York, NY, USA, DAC ’04, pp 908–913 (2004). doi:10.1145/996566.996808

  44. Zhang, C., Tian, Y.: RGB-D camera-based daily living activity recognition. J. Comput. Vis. Image Process. 2(4), 12 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johel Miteran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senouci, B., Charfi, I., Heyrman, B. et al. Fast prototyping of a SoC-based smart-camera: a real-time fall detection case study. J Real-Time Image Proc 12, 649–662 (2016). https://doi.org/10.1007/s11554-014-0456-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-014-0456-4

Keywords

Navigation