Skip to main content
Log in

Square-type-first inter-CU tree search algorithm for acceleration of HEVC encoder

  • Special Issue Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

In this paper, a fast inter-coding algorithm is proposed to reduce the computational load of HEVC encoders. The HEVC reference model (HM) employs the recursive depth-first-search (DFS) of the quad-tree search in terms of rate-distortion optimization in selecting the best coding modes for the best CU, PU, TU partitions, and many associated coding modes. The proposed algorithm evaluates the RD costs of the current CU only for its square-type PUs in the top-down search of the DFS. When the CU partition with the square-type PU is better than its sub-level CU partitions in terms of RD cost in bottom-up search of the DFS, the square type of current CU partition, along with its coding mode, is selected as the best partition. Otherwise, non-square-type PUs for the current CU level are evaluated. If the sub-partition is better than the CU with the non-square PUs, the sub-partition is finally selected as the optimum PU. Otherwise, the best non-square PU is selected as the best PU for the current level. Experimental results demonstrate that the proposed square-type-first inter-PU search can reduce the computational load in average encoding time by 66.7 % with 1–2 % BD loss over HM reference software. In addition, the proposed algorithm can yield an additional average time saving of 26.8–35.5 % against the three fast encoding algorithms adopted in HM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bross, B., Han, W.-J., Sullivan, G.J., Ohm, J.-R., Wang, Y.-K., Wiegand, T.: High efficiency video coding (HEVC) text specification draft 10 (for FDIS & Consent). Joint Collaborative Team on Video Coding (JCT-VC), JCTVC-L1003 (2013)

  2. Sullivan, G.J., Ohm, J.-R., Han, W.-J., Wiegand, T.: Overview of the high efficiency video coding (HEVC) standard. IEEE Trans. Circuits. Syst. Video Technol. 22(12), 1648–1667 (2012)

    Article  Google Scholar 

  3. Ohwovoriole, E., Andrepoulos, Y.: Rate-distortion performance of contemporary video codecs: comparison of Google/WebM VP8, AVC/H.264, and HEVC TMuC. In: Proc. London Communications Symposium (LCS), London, England (2010). http://www.ee.ucl.ac.uk/lcs/

  4. De Simone, F., Goldmann, L., Lee, J.-S., Ebrahimi, T.: Performance analysis of VP8 image and video compression based on subjective evaluations. SPIE Appl. Digital. Image Proc., XXXIV (2011)

    Google Scholar 

  5. Wiegand, T., Ohm, J.-R., Sullivan, G.J., Han, W.-J., Joshi, R., Tan, T.K., Ugur, K.: Special section on the joint call for proposals on high efficiency video coding (HEVC) standardization. IEEE Trans. Circuits Syst. Video Technol. 20(12), 1661–1666 (2010)

    Article  Google Scholar 

  6. Tan, T.K., Mark, M., Baroncini. V., Ramzan, N.: HEVC verification test results. Joint Collaborative Team on Video Coding (JCT-VC), JCTVC-Q0204 (2014)

  7. Kim, I.-K., Min, J., Lee, T., Han, W.-J., Park, J.: Block partitioning structure in the HEVC standard. IEEE Trans. Circuits Syst. Video Technol. 22(12), 1697–1706 (2012)

    Article  Google Scholar 

  8. McCann, K., Han, W.-J., Kim, I.-K., Min, J.-H., Alshina, E., Alshin, A., Lee, T., et al.: Samsung’s response to the call for proposals on video compression technology. Joint Collaborative Team on Video Coding (JCT-VC), JCTVC-A124 (2010)

  9. Ahn, Y.J., Hwang, T.J., Sim, D.G., Han, W.J.: Implementation of fast HEVC encoder based on SIMD and data-level parallelism. EURASIP Journal on Image and Video Processing 2014(1), 1–19 (2014)

  10. Kannangara, C.S., Rishardson, E.G., Bystrom, M., Solera, J.R., Zhao, Y., MAclennan, A., Cooney, R.: Low complexity skip prediction for H.264 through Lagrangian cost estimation. IEEE Trans. Circuits Syst. Video Technol. 16(2), 202–208 (2006)

    Article  Google Scholar 

  11. Wang, H., Kwong, S., Kok, C.: W.: An efficient mode decision algorithm for H.264/AVC encoding optimization. IEEE Trans. Multimed. 9(4), 882–888 (2007)

    Article  Google Scholar 

  12. Yang, L., Yu, K., Li, J., Li, S.: An effective variable block-size early termination algorithm for H.264 video coding. IEEE Trans. Circuits Syst. Video Technol. 15(6), 784–788 (2005)

    Article  Google Scholar 

  13. Moon, Y.H., Kim, G.Y., Kim, J.H.: An improved early detection algorithm for all-zero blocks in H.264 video encoding. IEEE Trans. Circuits Syst. Video Technol. 15(8), 1053–1057 (2005)

    Article  Google Scholar 

  14. Kuo, T.-Y., Lu, H.-J.: Efficient reference frame selector for H.264. IEEE Trans. Circuits Syst. Video Technol. 18(3), 400–405 (2008)

    Article  Google Scholar 

  15. Lui, Z., Li, L., Song, Y., Li, S., Goto, S., Ikenaga, T.: Motion feature and Hadamard coefficient-based fast multiple reference frame motion estimation for H.264. IEEE Trans. Circuits Syst. Video Technol. 18(5), 620–632 (2008)

    Article  Google Scholar 

  16. Gweon, R.H., Lee, Y.-L., Lim, J.: Early termination of CU encoding to reduce HEVC complexity. Joint Collaborative Team on Video Coding (JCT-VC), JCTVC-F045 (2011)

  17. Choi, K., Jang, E.S.: Coding tree pruning based CU early termination. Joint Collaborative Team on Video Coding (JCT-VC), JCTVC-F092 (2011)

  18. Yang, J., Kim, J., Won, K., Lee, H., Jeon, B.: Early skip detection for HEVC. Joint Collaborative Team on Video Coding (JCT-VC), JCTVC-G543 (2011)

  19. Li, B., Sullivan, G.J., Xu, J.: Comparison of compression performance of HEVC draft 7 with AVC high profile. Joint Collaborative Team on Video Coding (JCT-VC), JCTVC-J0236 (2012)

  20. Jung, J., Bross, B., Chen, P., Han, W.-J.: Description of core experiment 9: MV coding and skip/merge operations. Joint Collaborative Team on Video Coding (JCT-VC), JCTVC-D609 (2011)

  21. Bossen, F.: Common HM test conditions and software reference configuration. Joint Collaborative Team on Video Coding (JCT-VC), JCTVC-E196 (2011)

  22. Bjontegaard, G.: Calculation of average PSNR differences between RD-curves. ITU-Telecommunications Standardization Secto, VCEG-M33, pp. 290–294 (2001)

Download references

Acknowledgments

This research was partly supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (NRF-2014R1A2A1A11052210), Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2010-0025325), and the Research Grant of Kwangwoon University in 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donggyu Sim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahn, YJ., Sim, D. Square-type-first inter-CU tree search algorithm for acceleration of HEVC encoder. J Real-Time Image Proc 12, 419–432 (2016). https://doi.org/10.1007/s11554-015-0487-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-015-0487-5

Keywords

Navigation