Skip to main content
Log in

A fast deconvolution-based approach for single-image super-resolution with GPU acceleration

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

In this paper, we propose fast deconvolution-based image super-resolution (SR) with graphics processing unit (GPU)-accelerated computation. Recently, the deconvolution-based single-image SR has been proven to be very effective in upsampling images with favorable results. Based on the GPU-accelerated computation, we aim to realize the fast SR reconstruction and achieve balanceable performance in terms of both image quality and computational cost. To achieve this, we provide a novel and efficient deconvolution method to enhance the reconstruction results. We combine the gradient consistency in images with the anisotropic regularization which has been used in motion deblurring. Thus, we produce a directly parallelizable solution which is suitable for running on GPU by minimizing redundancy in computing. Experimental results demonstrate that the proposed method achieves superior performance in comparison with the existing methods with respect to image quality and runtime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tsai, R.Y., Huang, T.: Multiframe image restoration and registration. Adv. Comput. Vis. Image Process. 1, 317–339 (1984)

    Google Scholar 

  2. Park, S.C., Park, M.K., Kang, M.G.: Super-resolution image reconstruction: a technical overview. IEEE Signal Process. Mag. 20, 21–36 (2003)

    Article  Google Scholar 

  3. Freeman, W.T., Jones, T.R., Pasztor, E.C.: Example based super-resolution. IEEE Comput. Graphics Appl. 22, 56–65 (2002)

    Article  Google Scholar 

  4. Glasner, D., Bagon, S., Irani, M.: Super-resolution from a single image. In: Proceedings of IEEE International Conference on Computer Vision, Kyoto, Japan, pp 349–356. IEEE (2009)

  5. Zhang, H., Yang, J., Zhang, Y., Huang, T.: Non-local kernel regression for image and video restoration. In: Proceedings of European Conference on Computer Vision), Heraklion, Crete, Greece, pp 566–579. Springer-Verlag (2010)

  6. Yang, J., Wright, J., Huang, T., Ma, Y.: Image super-resolution via sparse representation. IEEE Trans. Image Process. 19, 2861–2873 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Tipping, M.E., Bishop, C.M.: Bayesian image super-resolution. In: Proceedings of Neural Information Processing Systems, Vancouver, British Columbia, Canada, pp 1279–1286. MIT Press (2002)

  8. Avidan, S., Shamir, A.: Seam carving for content-aware image resizing. ACM Trans. Gr. 26, Article 10 (2007)

  9. Li, X., Orchard, M.T.: New edge-directed interpolation. IEEE Trans. Image Process. 10, 1521–1527 (2001)

    Article  Google Scholar 

  10. Takeda, H., Farsiu, S., Milanfar, P.: Kernel regression for image processing and reconstruction. IEEE Trans. Image Process. 16, 349–366 (2007)

    Article  MathSciNet  Google Scholar 

  11. Lin, C.Y., Hsu, C.C., Lin, C.W., Kang, L.W.: Fast deconvolution based image super-resolution using gradient prior. In: Proceedings of Visual Communications and Image Processing, Tainan, Taiwan,  pp 1–4. IEEE (2011)

  12. Shan, Q., Li, J., Jia, J., Tang, C.K.: Fast image/video upsampling. ACM Trans. Gr. 27, Article 153 (2008)

  13. Dai, S., Han, M., Xu, W., Wu, Y., Gong, Y., Katsaggelos, A.K.: Softcuts: a soft edge smoothness prior for color image super-resolution. IEEE Trans. Image Process. 18, 969–981 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sun, J., Sun, J., Xu, Z., Shum, H.Y.: Image super-resolution using gradient profile prior. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, pp 1–8. IEEE (2008)

  15. Fattal, R.: Image upsampling via imposed edges statistics. ACM Trans. Gr. 26, Article no. 95 (2007)

  16. Tai, Y.W., Liu, S., Brown, M.S., Lin, S.: Super resolution using edge prior and single image detail synthesis. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, pp 2400–2407. IEEE (2010)

  17. Pickup, L.C., Roberts, S.J., Zisserman, A.: A sampled texture prior for image super-resolution. In: Proceedings of Neural Information Processing Systems, Vancouver, British Columbia, Canada, pp 1587–1594. MIT Press (2003)

  18. Cohen, Y.H., Fattal, R., Lischinski, D.: Image upsampling via texture hallucination. In: Proceedings of IEEE International Conference on Computational Photography, Cambridge, MA, USA,  pp 1–8. IEEE (2010)

  19. Hong, H.Y., Park, I.K.: Single-image motion deblurring using adaptive anisotropic regularization. Opt. Eng. 49, Article 097008 (2010)

  20. Owens, D.J., Luebke, D., Govindaraju, N., Harris, M., Kruger, J., Lefohn, E., Aaron, P., Timothy, J.: A survey of general-purpose computation on graphics hardware. Comput. Graphics Forum 26(1), 80–113 (2007)

    Article  Google Scholar 

  21. Gong, M., Langille, A., Gong, M.: Real-time image processing using graphics hardware: a performance study. In: Proceedings of International Conference on Image Analysis and Recognition, Toronto, Canada,  pp 1217–1225. Springer-Verlag (2005)

  22. Colic, A., Kalva, H., Furht, B.: Exploring NVIDA-CUDA for video coding. In: Proceedings of the first annual ACM SIGMM conference on Multimedia systems, Phoenix, Arizona, USA,  pp 13–22. ACM (2010)

  23. Griebel, M., Zaspel, P.: A multi-GPU accelerated solver for the three dimensional two-phase incompressible Navier-Stokes equations. Comput. Sci. Res. Dev. 25(1–2), 65–73 (2010)

    Article  Google Scholar 

  24. Cheung, N.M., Fan, X., Au, O.C., Kung, M.C.: Video coding on multicore graphics processors. IEEE Signal Process. Mag. 27(2), 79–89 (2010)

    Article  Google Scholar 

  25. Dolan, R., DeSouza, G.: GPU-based simulation of cellular neural networks for image processing. In Proceedings of International Joint Conference on Neural Networks, Atlanta, GA, USA,  pp 730–735 (2009)

  26. Jia, X., Lou, Y., Li, R., Song, W.Y., Jiang, S.B.: GPU-based fast cone beam CT reconstruction from undersampled and noisy projection data via total variation. Med. Phys. 37(4), 1757–1760 (2010)

    Article  Google Scholar 

  27. Shams, R., Sadeghi, P., Kennedy, R., Hartley, R.: A survey of medical image registration on multicore and the GPU. IEEE Signal Process. Mag. 27(2), 50–60 (2010)

    Article  Google Scholar 

  28. Zanella, R., Zanghirati, G., Cavicchioli, R., Zanni, L., Boccacci, P., Bertero, M., Vicidomini, G.: Towards real-time image deconvolution: application to confocal and STED microscopy. Sci. Rep. 3 (2013)

  29. Nasse, M.J., Woehl, J.C.: Realistic modeling of the illumination point spread function in confocal scanning optical microscopy. J. Opt. Soc. Am. A 27(2), 295–302 (2010)

    Article  Google Scholar 

  30. Bruce, M., Butte, M.: Real-time GPU-based 3D deconvolution. Opt. Express 21, 4766–4773 (2013)

    Article  Google Scholar 

  31. Mazanec, T., Hermánek, A., Kamenicky, J.: Blind image deconvolution algorithm on NVIDIA CUDA platform. In: Proceedings of IEEE International Symposium on Design and Diagnostics of Electronic Circuits and Systems, Vienna, Austria, pp 125–126. IEEE (2010)

  32. Pharr, M., Fernando, R.: GPU Gems 2: programming techniques for high-performance graphics and general-purpose computation (GPU Gems), Addison-Wesley Professional (2005)

  33. Keys, R.G.: Cubic convolution interpolation for digital image processing. IEEE Trans. Acoust. Speech Signal Process. 29, 1153–1160 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  34. Shan, Q., Jia, J., Agarwala, A.: High-quality motion deblurring from a single image. ACM Trans. Gr. 27(3), Article No. 73 (2008)

  35. https://developer.nvidia.com/cufft

  36. Kim, K.J., Kwon, Y.H.: Single-image super-resolution using sparse regression and natural image prior. IEEE Trans. Pattern Anal. Mach. Intell. 32(6), 1127–1133 (2010)

    Article  Google Scholar 

  37. Wang, Z., Bovik, A.C.: Quality assessment: from error measurement to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  38. Jung, C., Gu, A.: Curvature preserving image super-resolution with gradient-consistency-anisotropic-regularization prior. Sig. Process. Image Commun. 29(10), 1211–1222 (2014)

    Article  Google Scholar 

  39. Iovanovici, A., Visan, C., Marcu, M.: Performance and power consumption investigation for execution of integer operations on CPU and GPU processors for multimedia applications. In: Proceedings of IEEE Symposium on Intelligent Systems and Informatics, pp 285–289 (2009)

  40. Govett, M., Middlecoff, J., Henderson, T.: Running the NIM next-generation weather model on GPUs. In: Proceedings of IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing,  Melbourne, Australia, pp 792–796 (2010)

  41. Wahib, M., Maruyama, N.: Highly optimized full GPU-acceleration of non-hydrostatic weather model SCALE-LES. In: Proceedings of IEEE International Conference on Cluster Computing, Indianapolis, IN, USA,  pp 1–8 (2013)

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their valuable comments that have led to improvements in the quality and presentation of the paper. This work was supported by the National Natural Science Foundation of China (No. 61271298) and the International S&T Cooperation Program of China (No. 2014DFG12780).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheolkon Jung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, C., Ke, P., Sun, Z. et al. A fast deconvolution-based approach for single-image super-resolution with GPU acceleration. J Real-Time Image Proc 14, 501–512 (2018). https://doi.org/10.1007/s11554-015-0513-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-015-0513-7

Keywords

Navigation