Skip to main content
Log in

GPU implementation of non-local maximum likelihood estimation method for denoising magnetic resonance images

  • Special Issue Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

Magnetic resonance imaging (MRI) is a widely deployed medical imaging technique used for various applications such as neuroimaging, cardiovascular imaging and musculoskeletal imaging. However, MR images degrade in quality due to noise. The magnitude MRI data in the presence of noise generally follows a Rician distribution if acquired with single-coil systems. Several methods are proposed in the literature for denoising MR images corrupted with Rician noise. Amongst the methods proposed in literature for denoising MR images corrupted with Rician noise, the non-local maximum likelihood methods (NLML) and its variants are popular. In spite of the performance and denoising quality, NLML algorithm suffers from a tremendous time complexity \(O\left( {m^{3} N^{3} } \right)\), where \(m^{3}\) and \(N^{3}\) represent the search window and image size, respectively, for a 3D image. This makes the algorithm challenging for deployment in the real-time applications where fast and prompt results are required. A viable solution to this shortcoming would be the application of a data parallel processing framework such as Nvidia CUDA so as to utilize the mutually exclusive and computationally intensive calculations to our advantage. The GPU-based implementation of NLML-based image denoising achieves significant speedup compared to the serial implementation. This research paper describes the first successful attempt to implement a GPU-accelerated version of the NLML algorithm. The main focus of the research was on the parallelization and acceleration of one computationally intensive section of the algorithm so as to demonstrate the execution time improvement through the application of parallel processing concepts on a GPU. Our results suggest the possibility of practical deployment of NLML and its variants for MRI denoising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rajan, J., Veraart, J., Audekerke, J.V., Verhoye, M., Sijbers, J.: Nonlocal Maximum likelihood estimation method for denoising multiple-coil magnetic resonance images. Magn. Reson. Imaging 30, 1512–1518 (2012)

    Article  Google Scholar 

  2. He, L., Greenshields, I.R.: A nonlocal maximum likelihood estimation method for Rician noise reduction in MR Images. IEEE Trans. Med. Imaging 28, 165–172 (2009)

    Article  Google Scholar 

  3. Dietrich, O., Raya, J.G., Reeder, S.B., Ingrisch, M., Reiser, M.F., Schoenberg, S.O.: Influence of multichannel combination, parallel imaging and other reconstruction techniques on MRI noise characteristics. Magn. Reson. Imaging 26, 754–762 (2008)

    Article  Google Scholar 

  4. Rajan, J.: Estimation and removal of noise from single and multiple coil magnetic resonance images. Ph.D. Thesis, University of Antwerp, Belgium (2012)

  5. Aja-Fernández, S., Tristán, A., Alberola-López, C.: Noise estimation in single and multiple coil magnetic resonance data based on statistical models. Magn. Reson. Imaging 27, 1397–1409 (2009)

    Article  Google Scholar 

  6. Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4, 490–530 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Sijbers, J., Dekker, A.J., Scheunders, P., Dyck, D.: Maximum likelihood estimation of Rician distribution parameters. IEEE Trans. Image Process. 17, 357–361 (1998)

    Article  Google Scholar 

  8. Sijbers, J., Dekker, A.J.: Maximum likelihood estimation of signal amplitude and noise variance from MR data. Magn. Reson. Med. 51, 586–594 (2004)

    Article  Google Scholar 

  9. Eklund, A., Dufort, P., Forsberg, D., LaConte, S.M.: Medical image processing on the GPU—past, present and future. Med. Image Anal. 17, 1073–1094 (2013)

    Article  Google Scholar 

  10. Li, L., Hou, W., Zhang, X., Ding, M.: GPU-based block-wise nonlocal means denoising for 3D ultrasound images. Comput. Math. Methods Med. 2013, 1–10 (2013) (article ID 921303)

    MathSciNet  MATH  Google Scholar 

  11. Zhao, Y.: Lattice Boltzmann based PDE solver on the GPU. Vis. Comput. 24, 323–333 (2008)

    Article  Google Scholar 

  12. Sumanaweera, T., Liu, D.: Medical image reconstruction with the FFT. In: Pharr, M. (ed.) GPU Gems 2, pp. 765–784. Addison Wesley (2005)

  13. Knoll, F., Unger, M., Diwoky, C., Clason, C., Pock, T., Stollberger, R.: Fast reduction of undersampling artifacts in radial MR angiography with 3D total variation on graphics hardware. Magn. Reson. Mater. Phys. Biol. Med. 23, 103–114 (2010)

    Article  Google Scholar 

  14. Deng, W., Yang, C., Stenger, V.A.: Accelerated multidimensional radiofrequency pulse design for parallel transmission using concurrent computation on multiple graphics processing units. Magn. Reson. Med. 65, 363–369 (2011)

    Article  Google Scholar 

  15. Coupe, P., Yger, P., Barillot, C.: Fast non local means denoising for 3D MR images. Med Image Comput Comput-Assist Interv. 2, 33–40 (2006)

    Google Scholar 

  16. “CUDA C Programming Guide”. Nvidia Corporation, 2015. Nvidia toolkit documentation. http://docs.nvidia.com/cuda/cuda-c-programming-guide/#axzz3ac754Y00 (2015). Accessed 9 Jan 2015

  17. Cocosco, C.A., Kollokian, V., Kwan, R.S., Evans, A.C.: Brainweb: Online interface to a 3D MRI simulated brain database. NeuroImage 5, S425. http://www.bic.mni.mcgill.ca/brainweb/ (1997). Accessed 3 Nov 2014

  18. Rice, S.O.: Mathematical analysis of random noise. Bell Syst. Tech. 23, 282–332 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zimmer, S., Didas, S., Weickert, J.: A rotationally invariant block matching strategy improving image denoising with non-local means. In: International Workshop on Local and Non-Local Approximation in Image Processing, pp. 135–142 (2008)

  20. Wang, Y.K., Huang, W.B.: A CUDA-enabled parallel algorithm for accelerating retinex. J. Real-Time Image Process. 9, 407–425 (2014)

    Article  Google Scholar 

  21. Rodríguez, J.L., Heras, D.B., Argüello, F., Kainmueller, D., Zachow, S., Bóo, M.: GPU-accelerated level-set segmentation. J. Real-Time Image Process. 1–15 (2013). doi:10.1007/s11554-013-0378-6

  22. Lustig, D., Martonosi, M.: Reducing GPU offload latency via fine-grained CPU-GPU synchronization. In: 2013 IEEE 19th International Symposium on High Performance Computer Architecture (HPCA), pp. 354–365 (2013)

  23. Bender, M.A., Farach-Colton, M., Mosteiro, M.A.: Insertion Sort is O(n log n). Theory Comput Syst. 39, 391–397 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rajan, J., Dekker, A.J., Sijbers, J.: A new non-local maximum likelihood estimation method for Rician noise reduction in magnetic resonance images using the Kolmogorov-Smirnov test. Sig. Process. 103, 16–23 (2014)

    Article  Google Scholar 

  25. Rajan, J., Jeurissen, B., Verhoye, M., Audekerke, J.V., Sijbers, J.: Maximum likelihood estimation-based denoising of magnetic resonance images using restricted local neighborhoods. Phys. Med. Biol. 56, 5221–5234 (2011)

    Article  Google Scholar 

  26. Aja-Fernández, S., Alberola-López, C., Westin, C.: Noise and signal estimation in magnitude MRI and Rician distributed images: a LMMSE approach. IEEE Trans. Image Process. 17, 1383–1398 (2008)

    Article  MathSciNet  Google Scholar 

  27. Manjón, J.V., Carbonell-Caballero, J., Lull, J.J., García-Martí, G., Martí-Bonmatí, L., Robles, M.: MRI denoising using non local means. Med. Image Anal. 12, 514–523 (2008)

    Article  Google Scholar 

  28. Rajan, J., Audekerke, J.V., Van der Linden, A, Verhoye, M., Sijbers, J.: An adaptive non local maximum likelihood estimation method for denoising magnetic resonance images. In: IEEE International Symposium on Biomedical Imaging (ISBI 2012), Barcelona, pp. 1136–1139 (2012)

  29. Krissian, K., Aja-Fernández, S.: Noise driven anisotropic diffusion filtering of MRI. IEEE Trans. Image Process. 18, 2265–2274 (2009)

    Article  MathSciNet  Google Scholar 

  30. Sudeep, P.V., Palanisamy, P., Kesavadas, C., Rajan, J.: Nonlocal linear minimum mean square error methods for denoising MRI. Biomed. Signal Process. Control 20, 125–134 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeny Rajan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Upadhya, A.H.K., Talawar, B. & Rajan, J. GPU implementation of non-local maximum likelihood estimation method for denoising magnetic resonance images. J Real-Time Image Proc 13, 181–192 (2017). https://doi.org/10.1007/s11554-015-0559-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-015-0559-6

Keywords

Navigation