
Journal of Real-Time Image Processing manuscript No.
(will be inserted by the editor)

Acceleration Techniques and Evaluation on Multicore
CPU, GPU and FPGA for Image Processing and
Super-Resolution.

Georgios Georgis · George Lentaris · Dionysios Reisis

Received: 2015 / Revised: 2016

Abstract Super-Resolution (SR) techniques constitute

a key element in image applications, which need high-

resolution reconstruction while in the worst case only a

single low-resolution observation is available. SR tech-

niques involve computationally demanding processes

and thus researchers are currently focusing on SR per-

formance acceleration. Aiming at improving the SR

performance, the current paper builds up on the charac-

teristics of the L-SEABI Super-Resolution (SR) method

to introduce parallelization techniques for GPUs and

FPGAs. The proposed techniques accelerate GPU recon-

struction of Ultra-High Definition content, by achieving

three (3x) times faster than the real-time performance

on mid-range and previous generation devices and at

least nine times (9x) faster than the real-time perfor-

mance on high-end GPUs. The FPGA design leads to a
scalable architecture performing four (4x) times faster

than the real-time on low-end Xilinx Virtex 5 devices

and sixty-nine times (69x) faster than the real-time on

the Virtex 2000t. Moreover, we confirm the benefits

of the proposed acceleration techniques by employing

them on a different category of image-processing algo-

rithms: on window-based Disparity functions, for which

the proposed GPU technique shows an improvement

over the CPU performance ranging from 14 times (14x)

to 64 times (64x) while the proposed FPGA architecture

provides 29x acceleration.

D. Reisis
Electronics Laboratory
Department of Physics
National and Kapodistrian University of Athens, Greece
Tel.: +0030-210-7276708
Fax: +0030-210-7276801
E-mail: dreisis@phys.uoa.gr

1 Introduction

There is a wide range of image processing applications

such as satellite and medical reconstruction/enhance-
ment, high definition video broadcasting/processing, iris

recognition and text images upgrade, for which the pres-

ence of high-resolution images is essential; meanwhile

hardware limitations and/or an increasing implemen-

tation cost prevent the integration of high-resolution

sensors in the systems supporting the above applications.

Researchers and engineers addressed this problem by

modeling image degradations and by introducing sig-

nal processing techniques to post process the acquired

images. Such approaches exploit Super-resolution (SR)

techniques that construct high-resolution (HR) images

from several low-resolution (LR) observations and they

thus trade off computational with hardware/implemen-

tation cost [1]. Consequently, current research focuses

on improving the complexity and/or the running time

performance of these processes [2] [3] [4] [5].

Aiming at providing an efficient solution for these

processes the current manuscript proposes acceleration

procedures of image processing techniques on multi-core,

General Purpose Graphics Processing Units (GPUs) and

Field-Programmable Gate Array (FPGA) platforms. It

emphasizes the benefits of employing our Low-complexity

Statistical Edge-Adaptive Back-projected Interpolation

(L-SEABI) SR method [6] to speed up the reconstruc-

tion process by presenting efficient parallelization tech-

niques for this method performing on GPUs and FPGAs.

Our goal is to provide techniques and the correspond-

ing implementations, which overcome the underlying

platform’s drawbacks and ultimately, to present a com-

prehensive performance assessment. To our knowledge,

this assessment contributes to the current literature by

jointly examining four parameters: i) absolute perfor-

2 Georgios Georgis et al.

mance, ii) input size, iii) power consumption and iv) cost

of ownership on multiple GPU, FPGA and multi-core

CPUs designating low to high-end ICs. Additionally,

to confirm the benefits of our acceleration techniques,

we apply the entire design/optimization/evaluation pro-

cess on a computationally demanding window-based

Disparity algorithm. Finally, taking into account all

the results on multiple platforms and devices presented

by this work, we perform a comparative study at the

platform level to evaluate the relative performance of

FPGAs, GPUs and CPUs, in terms of speed and power
consumption.

The proposed GPU parallelization/optimization tech-

niques are effective for a large span of GPU architecture

generations including the latest. We apply these tech-

niques on multiple abstraction levels ranging from the

design phase to the implementation API and exploit

GPU architectural features to fuse increased throughput,

instruction-level parallelism, with decreased latency and

divergence [7]. These techniques allow the achievement

of real-time (i.e., 30 frames/sec) GPU reconstruction of

Ultra-High Definition content. Furthermore, as it will

be demonstrated in the remaining sections of the pa-

per, we achieve 3x faster performance (frame rate) than

the conventional real-time requirement on mid-range

and previous generation devices and at least 9x faster

performance on the currently available high-end GPUs.

Moreover, we introduce a parameterizable and highly

scalable hardware architecture for L-SEABI and we

evaluate its performance under varying parallelization

factors and FPGA devices. By exploiting pixel and task-

level pipelining, the proposed architecture performs four

(4x) times faster than the conventional real-time require-

ment on low-end Virtex 5 devices and at most sixty-nine

(69x) times faster than real-time on the Virtex 2000t
device. When implementing the proposed architecture

on a Virtex 7 485T device, we accomplish real-time

processing of 182 Mpixel images, which is twice the

resolution of upcoming 11K monitors. Furthermore, we

comparatively evaluate the performance of SIL-SEABI

among CPU, GPU and FPGA implementations, tak-

ing into account the power dissipation of each platform

thereby estimating the achieved performance per Watt.

To enhance our evaluation and to strengthen the

results reached from our SR study regarding the ef-

ficiency of our acceleration techniques, we consider a

more computationally intensive scenario: the stereo cor-

respondence problem and more specifically a Disparity

algorithm, which computes a depth map based on metric

aggregations with non-separable filters, left-right con-

sistency checks and sub-pixel accuracy estimations. As

with SIL-SEABI, we provide i) a GPU-accelerated im-

plementation aiming at assessing bottlenecks through

kernel profiling and ii) an FPGA architecture targeting

the reduction of memory requirements. On a mid-range

device, our GPU disparity implementation achieves an

acceleration of over 14x against the fastest CPU exam-

ined for 1120×1120 input and 200 disparities, while the

proposed FPGA architecture attains an acceleration of

29x over the same CPU.

The manuscript is organized with the following Sec-

tion presenting related work in the field of application ac-

celeration through many-core architectures and FPGAs.

Section 3 highlights the benefits of using SIL-SEABI

through a quality evaluation of the SR algorithm both

as stand-alone solution as well as an enhancement to

more recent state-of-the-art SR. Section 4 presents a

thorough profiling of the CPU and the coarse-grain GPU

techniques leading to our optimized real-time GPU im-

plementation. Section 5 delineates our scalable FPGA

SR architecture and evaluates its performance. Section 6

extends our study onto the Disparity algorithm of Stereo

Correspondence and section 7 displays our comparative

study. Finally, section 8 concludes the paper.

2 Related Work

2.1 GPU Acceleration

Throughout the literature, many-core architectures have

been widely employed as an efficient means to accelerat-

ing image and/or video processing. In the field of Super-

Resolution, Freedman et al. [8] applied their single-image

SR method on a GTX 480 GPU to achieve near real-

time performance when upsampling from 640 × 360

to 1920 × 1080. Using dictionary-based methods, the

authors of [9] also provide a GPU implementation of

their deformable image patch method. On a different

approach, the authors of [3] and [4] exploited the cuda-

convnet library [10] to train their Convolutional Neural

Network mapping between low and high-resolution im-

ages. More recently, Jung et al. employed the cuFFT

[11] library in their deconvolution-based SR approach,

achieving 53 ms for 2x upsampling to 1920× 1080 on a

GTX 580 GPU device. GPUs have also been common

early on in accelerating stereo vision applications, as the

authors of [12] displayed. Their box filter window-based

matching method attains real-time performance on a

8800GTX in 1024×768 resolution for 50 disparities. Also,

in [13], a hardware-efficient bilateral filter that features

high accuracy and fast aggregation was proposed and

implemented on a GTX 580 GPU. The authors of [14]

[15] combine spatial with temporal-based processing to

achieve real-time performance for 320× 240 resolutions

on more recent GPU microarchitectures.

Title Suppressed Due to Excessive Length 3

2.2 FPGA Acceleration

Whenever the application’s computational characteris-

tics necessitate a combination of high performance and

low power consumption, mapping algorithms onto in-

tegrated circuits (ICs) seems like the most preferable

solution. Field-Programmable Gate Arrays (FPGAs)

consist of configurable logic blocks and embedded func-

tions which altogether cater for such requirements with

great flexibility, especially in problems pertinent to com-

puter vision. For instance, Bowen et al. [16], combined

a weighted-mean estimator with iterative refinement for

multi-frame image upsampling to 720p at 61 frames per

second (fps) on a Xilinx Virtex II FPGA. The authors of

[17] implement a multi-frame Iterative Back-projection

framework on a Virtex 4 FPGA to maintain a per-

formance of 25 frames per second for 2 iterations on

1024×1024 output.

In more recent developments, Sanada et al. [18] pro-

posed an edge enhancement single-image Super Reso-

lution architecture relying on integer operations which

achieved a performance of 60, 400×400 fps on an Al-
tera ep2s130 Stratix II FPGA. Pérez et al. designed a

stream-processing FPGA architecture to super-resolve

data from micro-lens arrays in light-field cameras [19].

Their solution requires 105.9 ms to produce 589×589

images from 291×291 micro-lenses on low-power FPGA

platforms. Extending the problem to High Definition

resolutions, the authors of [20] present a real-time Altera

Aria II SR implementation. For more computationally in-

tensive computer vision problems, Greisen et al. propose

a window-based stereo matching FPGA implementation,

which can compute 256 disparities of 1080p images in

real-time [21]. The latter is feasible due to the authors’

hierarchical approach, which initially computes the dis-

parity for 16 times smaller images and then refines the

upsampled disparity map by searching at a local pixel

area. In general, a common feature of real-time stereo

implementations is their increased resource cost as [22,

23] display.

2.3 GPU-FPGA Comparison

Throughout the literature, the comparative assessment

of performance between GPUs and FPGAs is based

on accelerating well-known algorithms or generic im-

plementations of a specific algorithmic category. For

instance, Che et al. [24] employ a 8800GTX GPU and a

Virtex II FPGA to examine Gaussian Elimination used

in linear algebra, the DES used in cryptography and the

Needleman-Wunsch algorithm used in DNA sequence

alignment. The work in [25] proposes fully customized

Cholesky Decomposition implementations on the high-

end GTX 480 and Virtex 6 xc6vsx475t. The authors

of [26] assess a wide range of applications (i.e., random

number generation, matrix multiplication, parallel re-

duction and N-body simulation) on a GTX 285 and

the HC-1 HPC multi-FPGA platform. In the field of

computer vision, Kalarot et al. [27] implement a generic

disparity algorithm on the GTX 280 and the Altera

Stratix III platforms. A complete blood vessel detection

system from medical images [28] is implemented on a

GTX 295 GPU and a Spartan-3 FPGA, while more
recently, a) Pietron et al. [29] compare a human skin

classifier implementation on a Tesla m2090 and a Virtex

5 device and b) the ceramic tile defect detection algo-

rithm of [30] is evaluated on the 9800GT GPU and three

different FPGAs. In a slightly different direction, the

authors of [31] evaluate the performance of High-Level

Synthesis of GPU to FPGA stereo matching code.

The above literature survey leads to the conclusion

(to be revised by our current work) that, GPUs are

more suitable for SIMD computations with no inter-

dependencies. They enable easier migration from a con-

ventional software implementation, provide flexibility

whenever the designer needs to implement changes and

present a low total cost of ownership. On the other

hand, they are less efficient in applications requiring

a high amount of and/or irregular memory accesses,

extensive synchronization and, finally, they consume

more power. FPGAs, being more suitable for bit-level

streaming operations, provide a higher level of control

over the implementation’s details. To their advantage

is the fact that they combine high throughput, low

power consumption, feature deterministic performance
and resource cost. They are though more complex to

program/customize, require thorough comprehension

of the underlying algorithm and are not fully suitable

for a) applications of high dataflow complexity or b)

large input problems due to their restricted memory
resources.

Focusing on improving solutions for image processing

problems, this work presents parallelization techniques

for the low-complexity SIL-SEABI SR algorithm [6].

As a preface to the SIL-SEABI parallelization, the fol-

lowing section stresses the advantages of using it as

an enhancement to well-established and more recent

state-of-the-art SR techniques.

3 The L-SEABI Algorithm as a standalone SR

solution and State-of-the-Art enhancement

Our proposed L-SEABI Super-Resolution algorithm [6],

achieves objective quality comparable to highly involved

SR methods at significantly lower computational cost,

4 Georgios Georgis et al.

Table 1: Objective comparison of the L-SEABI algo-

rithm against its single iteration case, its construction

phase, the NARM SR and the Super-Resolution method

using Deformable Patches (scaling factor f=2). All al-

gorithms use the parameters proposed by their authors.

Lower BRISQUE indicates higher quality.

Method: L- SIL- L- NARM DPSR
output size SEABI SEABI SEAI [36] [9]

M
S

S
IM

QCIF 0.9114 0.9086 0.9013 0.9278 0.9106
CIF 0.8763 0.8743 0.8604 0.8817 0.8834
SD1 0.9702 0.9679 0.9652 0.9730 0.9751
720p 0.9403 0.9567 0.9537 0.9618 0.9636
1080p 0.9796 0.9784 0.9783 0.9808 0.9816
2160p 0.9880 0.9879 0.9874 0.9887 0.9883
avg 0.9474 0.9456 0.9411 0.9523 0.9504

B
R

IS
Q

U
E

QCIF 39.9237 43.5880 42.5035 39.7551 30.1888
CIF 33.8815 36.1080 33.0046 45.2763 42.7670
SD1 42.7928 44.4549 47.5913 46.7715 38.9799
720p 41.6382 43.5580 46.1487 46.9208 41.8770
1080p 40.4554 42.0595 46.7294 47.1687 44.9506
2160p 56.8680 57.9444 58.4345 59.8403 55.7759
avg 42.5948 44.6188 45.7353 47.6221 42.4232

i.e. 3 orders of magnitude less execution time. It consists

of a construction phase which is executed once and a

refinement phase which is iterative. The single iteration

case of L-SEABI [6], namely SIL-SEABI, further re-

duces the execution time by an order of magnitude at

the expense of negligible quality degradation.

Comparison to the state-of-the-art shows [6] that

L-SEABI is faster than a) dictionary-based methods
such as the Sparse Representation with over-complete

dictionaries [32], the Nonlocal Similarity Adaptive Regu-

larization [33] (ASDS-AR-NL) and the Anchored Neigh-

borhood Regression (ANR) [2], b) Bayesian prior meth-

ods such as the Norm l1 [34], and better than c) IBP -

based methods such as the Nonlocal Iterative Back-

Projection [35] (NLIBP). More recently, the authors in

[36] proposed the concept of a nonlocal autoregressive

model (NARM) i.e. the adaptive exploitation of nonlo-

cal image redundancies in a sparse representation con-

text to improve the performance of the standard sparse

representation model. Authors in [9] also enhance the

sparse-representation approach by proposing a regular-
ized deformation field instead of fixed vector patches (i.e.,

Deformable Patch Super-Resolution, DPSR). Common

ground in the aforementioned state-of-the-art methods

is an initial reconstruction step which builds an initial

estimation image through bicubic interpolation.

Motivated by the result that L-SEABI can increase

the quality of common interpolation methods we use

L-SEABI to improve the performance of state-of-the-

art SR. Ergo, this section presents the application of

a) L-SEABI, b) SIL-SEABI and c) their construction

phase only (noted as L-SEAI), in place of the initial

reconstruction step of the [32,33,2,35,9,36] methods

to upsample each low-resolution image by a factor of

two in each dimension. The output quality is measured

by employing the full-reference MSSIM [37] and the

no-reference BRISQUE [38] metrics.

Table 1 presents the average MSSIM and BRISQUE

metrics for L-SEABI, SIL-SEABI, L-SEAI, versus the
more recent NARM and DPSR methods of the dataset

used in [6] (26 images in resolutions from 176×144

up to 3840×2160). The results display that append-

ing adaptive iterations to L-SEAI marginally increases

the output quality with respect to the MSSIM met-

ric, though the difference is more pronounced with

BRISQUE. All L-SEABI cases perform comparably

to the NARM and DPSR methods and even achieve

higher quality when considering BRISQUE. These re-

sults are consistent with those documented in [6] re-

garding dictionary-based methods processing a single

image.

Table 2 displays the average per resolution quality

difference between the results obtained by the methods

in [32,33,2,35,9,36] when using L-SEABI /SIL-SEABI /L-

SEAI and the results obtained by the same methods

when using the parameters proposed by their respec-

tive authors in place of their construction phase. Pro-

viding alternative initialization to the method in [35]

results in a slight MSSIM degradation of 0.08 on av-

erage. ∆BRISQUE on the other hand signifies a qual-

ity increase, especially when using the L-SEABI /SIL-

SEABI methods in 720p or higher resolutions. Note

that the method in [35] as proposed by the authors

performs 20 back-projection iterations which, when

combined with the already back-projected result of L-

SEABI /SIL-SEABI oversharpen the image. Thus, in

NLIBP, using the L-SEAI produces more balanced re-

sults in all resolutions while L-SEABI and SIL-SEABI

can be used in high-definition content. Similar results

were obtained when considering the more robust ANR

method; we measure an average MSSIM degradation

of 0.02 while BRISQUE favors the application of L-

SEABI /SIL-SEABI by displaying a quality increase in

almost all resolutions. When augmenting the method

in [32] we measure similar MSSIM results to the ANR.

L-SEABI and SIL-SEABI now increase quality under

all resolutions when considering BRISQUE. Regarding

NARM and ASDS-AR-NL, MSSIM displays a negligible

increase of approximately 0.002, while BRISQUE shows

that SIL-SEABI and L-SEABI respectively provide the

highest quality in all resolutions. Our low complexity

methods also enhance the quality of DPSR, by 0.005

and 2.63 when evaluating MSSIM and BRISQUE respec-

tively. Therefore, the above results show that in most

cases, the SIL-SEABI algorithm can be used to further

Title Suppressed Due to Excessive Length 5

Table 2: Per resolution objective comparison of state-of-the-art SR algorithms (scaling factor f=2) when using

L-SEABI (a), SIL-SEABI (b) and L-SEAI (c) as their initial reconstruction phase against the parameters proposed

by their authors. Lower ∆BRISQUE indicates higher quality.

↓Metric Algorithm → NLIBP ANR Yang et al. NARM DPSR ASDS-AR-NL

output size↓ Initialization [35] [2] [32] [36] [9] [33]

∆
M

S
S

IM

720p

(a) -0.07074 -0.01943 -0.01730 0.00116 0.00276 0.00171

(b) -0.07234 -0.02162 -0.01914 0.00113 0.00267 0.00169

(c) -0.01511 -0.01082 -0.01407 0.00114 0.00206 0.00164

1080p

(a) -0.05187 -0.01130 -0.01427 0.00128 0.00087 0.00168

(b) -0.05229 -0.01223 -0.01473 0.00126 0.00083 0.00168

(c) -0.02102 -0.00564 -0.00973 0.00125 0.00064 0.00165

∆
B

R
IS

Q
U

E

720p

(a) -8.77396 -2.94443 -6.10462 0.05638 -0.93106 -0.0634

(b) -5.48932 -2.42523 -4.26859 -0.38838 -0.83522 -0.07618

(c) -5.10736 -0.39096 -0.25632 0.09672 -0.79050 -0.03506

1080p

(a) -7.86562 -7.99265 -10.8402 1.36240 -1.83855 -0.01110

(b) -4.88077 -7.44972 -9.51325 0.48452 -1.76727 0.00032

(c) -3.97212 -2.69070 -3.31287 0.70232 -1.56985 -0.00012

(a) normal SR: [36]
MSSIM: 0.865780
BRISQUE: 39.3129

(b) [36]+SIL-SEABI
MSSIM: 0.869826
BRISQUE: 38.4339

(c) normal SR: [32]
MSSIM: 0.863308
BRISQUE: 37.0668

(d) [32]+SIL-SEABI
MSSIM: 0.837666
BRISQUE: 33.3080

Fig. 1: Subjective comparison of [36], [32]: normal execution and enhanced with SIL-SEABI (f = 2).

improve state-of-the-art SR quality, as evaluated objec-

tively by the MSSIM and BRISQUE metrics. Please
see Appendix A for Table 9 which includes the results

for all resolutions.

To subjectively assess state-of-the-art SR enhance-

ment based on our methods, in Fig. 1 we present the

output of [36] and [32] when processing the 256×256

Cameraman, image. Using SIL-SEABI to complement

NARM, (Fig. 1b) noticeably reduces the aliasing ef-

fects of the method. When we employ SIL-SEABI to

initialize [32] (Fig. 1d) the results display a percepti-

ble contrast enhancement. Similar results (i.e., aliasing

reduction and contrast enhancement) can be observed

when SIL-SEABI is applied before DPSR [9] and ANR

[2] respectively. Please see Fig. 17 in Appendix A which

displays subjective results for 4 different images.

4 Acceleration of L-SEABI on GPU

The current section presents first, the strategy followed

for parallelizing L-SEABI on GPU and second, the

implementation, optimization issues, and performance

evaluation.

4.1 Implementation Strategy: CPU to GPU

This section describes the steps leading from a SIL-

SEABI CPU implementation to our GPU implementa-

tion. Figure 2 provides an overview of the two phases

and the distinct processes involved in the L-SEABI

algorithm. All image operations are executed serially,

beginning with the operation of the gradient compu-

tation and summation for each pixel position in the

original image. Following the construction phase of L-

SEABI, the initial reconstruction outcome is copied to a

temporary buffer. Subsequently, the image is refined iter-

atively and adaptively, based on the error minimization

criterion.

To determine the proposed parallelization strategy

on the GPU platform we use oprofile [39] to analyze

the single-threaded execution of the SIL-SEABI 4.9.2

GCC executable. We evaluate our code on an Intel

6 Georgios Georgis et al.

Fig. 2: L-SEABI algorithm: distinct processes.

Core i5-3470 CPU for 100 repetitions on at least 50

successive frames of each dataset sequence and average

the results over all image sizes. As is plotted in Fig. 3,

approximately 42% of the total execution time is on

average consumed on the address clamping (clamp x,y)

function which restricts pixel coordinates according to

the image boundaries, while clamping the luminance

values to the range of [0, 255] requires 3% of the total

upsampling time (Y-clamp). The non-separable, 5×5

back-projection filter (bp-flt) is accountable for 20% of

the total computation time, i.e. almost the same as the

construction phase and the CxHD upsampling combined

(12.04% and 4.27% respectively). Separable convolution

on the other hand takes up 12% of CPU time (blr-

flt). Adding the error back to the HR image consumes

approximately 1.36% of the total time (adderror in Fig.

3), creating a copy of the constructed HR buffer for

the algorithm’s refinement phase (copybuffer) accounts

for approximately 1.25% CPU time and the remaining

processes sum up to 4%. Based on the obtained profiling

results, we will first describe our generic L-SEABI GPU
technique, then document the improvements towards

the proposed SIL-SEABI implementation and finally
evaluate the performance achieved.

4.2 GPU Implementation and Optimizations

The CUDA programming model allows for unified em-

ployment of massively multithreaded processors for both

graphics and general-purpose parallel computing. CUDA-

capable devices consist of scalable arrays of Streaming

Multiprocessors (SMs) to which the programmer dis-

tributes parallel threads through high-level GPU pro-

grams called kernels [7]. The CUDA API also defines

an assembly-resembling intermediate language, the Par-

allel Thread Execution virtual machine and instruction

set architecture (PTX ISA) [40]. The nVidia compiler

translates CUDA code to PTX and the driver converts

the PTX into GPU-executable code. For all evaluation

purposes, we will test our GPU code on three devices

designating successive major compute capability ver-

sions: the GeForce GTX 550 Ti (Fermi microarchitec-

0 10 20 30 40 50

0.33

0.39

0.5

1.36

1.67

2.98

4.27

11.89

12.04

19.89

41.94

Percentage

SIL-SEABI - Intel i5-3470, oprofile

l1 norm decimate

errimg copybuffer

adderror Y-clamp

L-SEAI blr-flt

CxHD bp-flt

clamp x,y

Fig. 3: Profiling the SIL-SEABI algorithm for single-

threaded execution on the CPU.

ture) with compute capability 2.1, the GeForce GTX

670 (Kepler microarchitecture) with compute capability

3.0 and the GeForce GTX 960 (Maxwell microarchi-
tecture) with compute capability 5.2. The respective

number of CUDA cores are 192, 1344 and 1024. In our

evaluation we first provide a coarse-grained profiling

analysis for a single iteration of our generic L-SEABI

GPU implementation. Using CUDA 7.0 we will compare

against the results of Fig. 3 and then we will modify
the GPU-accelerated version as required for SIL-SEABI.

To implement SIL-SEABI we will focus on improving

the overall flow and the specifics of each kernel, using

our L-SEABI implementation as the groundwork for

additional optimizations. We will focus on creating a

GPU implementation which does not rely on specific
libraries and provides good performance regardless of

the underlying architecture.

As reported in [41] the use of page-locked memory

(stored in the Host’s physical RAM) allows for an ap-

proximate twofold increase in bandwidth compared to

pageable memory. Thus, on our Host code we begin

by allocating page-locked memory for the LR and HR

image buffers using the cudaHostAlloc function. Besides,

in cases where memory access patterns display a spatial

locality - such as is our case throughout the L-SEABI

algorithm - the use of texture memory is preferred, as

it is also cached. Additionally, boundary addressing is

handled automatically and therefore, the increased cost

related to the address clamping function of the CPU

implementation will be mitigated. As a result of texture

memory usage, we copy the page-locked buffers onto the

device using the cudaMemcpy2D function with which

we also handle the required texture memory alignment.

Title Suppressed Due to Excessive Length 7

Input: LR Image , max i t e ra t i ons , max error
Output: HR Image
1 : gradientComputeK
2 : reduceK1 => r d c r e s 1

3 : l s e a iK
for (int i =0; i<max i t e r a t i on s ; i++)
{
4 : cudaMemcpy2D(Device−>Device)
5 : convColsK
6 : convRowsK
7 : decimateK
8 : err imgK
9 : absK
10 : reduceK2 => r d c r e s 2

i f (r d c r e s 2 < max error)
{

11 : CxHDK
12 : convNoSepK
13 : adderrorK

}
e l se break ;

}

Fig. 4: L-SEABI GPU implementation: pseudocode

listing kernels.

For performance reasons, it is recommended practice

that the number of threads in each block are a multiple

of the fixed warp size of 32 threads (i.e., the number

of threads executed in a lockstep). According to Xu et

al. [42] splitting the image buffer into 2D tiles of 32×4

samples provides better performance results on devices

having compute capability of 1.3 or higher. Based on

the above result and our experimentation we employ

the aforementioned thread partitioning scheme on the

GTX 670, GTX 960 GPUs and increase the block size

to 32×8 threads on the GTX 550Ti by adapting the

grid size according to the input image dimensions.

Figure 4 lists the pseudocode of the device process-

ing flow in the proposed L-SEABI implementation; the

GPU kernels are denoted with the K subscript. In the

gradientComputeK kernel every thread computes the

gradient in both dimensions and in the process creates

a W×H buffer storing the per-pixel sums of squared

gradients. Next, to compute the total variation we em-

ploy the nVidia designed parallel reduction kernel [43],

which features unrolling of operations and summation

of multiple values per each thread (reduceK in Fig. 4).

The lseaiK kernel involves computation of the initial

reconstruction by employing the rdc res1 result of the

gradientComputeK and it features a balanced cost be-

tween arithmetic and memory transfer operations; each

thread fetches 16 surrounding samples per-pixel from

texture memory to registers, performs characterization

based on the threshold result and computes the lumi-

nance outcome for the horizontal, vertical and diagonal

positions of the upsampled grid. Note here that, in order

to avoid thread divergence when calculating the coordi-

nates in the HR grid, we execute our upsampling kernels

by using the LR grid partitioning scheme. Thus, the HR

offsets are computed as follows:

Ioffset =[(ty ∗ 2) ∗ (W ∗ 2)] + (tx ∗ 2)

HHoffset =[(ty ∗ 2) ∗ (W ∗ 2)] + [(tx ∗ 2) + 1]

HVoffset ={[(ty ∗ 2) + 1] ∗ (W ∗ 2)}+ (tx ∗ 2)

HDoffset ={(ty ∗ 2) + 1] ∗ (W ∗ 2)}+ [(tx ∗ 2) + 1]

(1)

where tx, ty are the translated 2D thread coordinates

inside a 1D memory array and W is equal to the LR

image width or the pitch size in bytes, in case of a

non-texture or texture-bound output HR buffer respec-

tively. Furthermore, this approach effectively increases

the instruction level parallelism (ILP) to 4 because each

thread computes and stores four pixel values in the

upsampled grid.

The iterative refinement phase (lines 4−13) begins its

first/subsequent iterations by copying the reconstruct-

ed/refined image to an intermediate, texture-bound

buffer. This copy takes place inside the device and pre-

cedes the two separable filtering kernels (convColsK,

convRowsK), which also rely on texture memory and

register storage: each thread fetches 5 pixels per input

sample from the HR buffer into device registers, com-

putes the convolution sum and copies the result from

registers back into global memory. We note here that

all the filtering operations in our kernels are based on

unrolled operations.

The image is then subsampled by decimateK, which

employs the LR thread partitioning scheme and it simply

copies data from the samples in the HR buffer with

coordinates (tx ∗ 2, ty ∗ 2), to the samples in the LR

buffer with coordinates (tx, ty). The CxHDK and the

convNoSepK follow similar design choices to the L-SEAI

kernel, i.e., they rely on texture fetches for input and per-

thread registers to store intermediate results; threads

of the CxHDK read 12 pixels per input sample, while

convNoSepK threads read 25 pixels per input sample.

The remaining kernels are functionally straightforward:

errimgK subtracts the decimated image from the LR

input and then its result is conditionally forwarded to
CxHDK based on the current norm l1 value (rdc res2,

i.e., the outcome of absK and reduceK).

Figure 5 displays the execution analysis of the pro-

posed L-SEABI implementation using nVidia’s profiler

on the devices tested averaged over all image resolu-

tions. Bars outlined in black describe the corresponding

cost on the GTX 670 and bars outlined in blue refer

to the cost as measured on the GTX 550 Ti. As men-

tioned earlier, due to the use of texture-bound buffers,

address clamping is handled with minimal overhead and

therefore, the profiler does not report a discrete cost.

8 Georgios Georgis et al.

0 5 10 15 20 25 30

2.14
2.05
2.38
2.21

3.45
4.05

1.66
5.25

7.99
5.85

7.38
8.41
8.21
7.87

11.13
10.61

5.84
11.4

18.35
13.57

23.04
17.7

Execution Time %

L-SEABI Single-iteration: GTX 670 and GTX 550Ti

decimateK errimgK
l1 norm H2D

adderrorK CxHDK
D2D L-SEAI

D2H blr-flt

bp-flt

Fig. 5: L-SEABI : Single-iteration GPU Analysis.

Luminance clamping on the other hand requires an ex-

plicitly designed device function. The compiler fuses our

luminance clamping code with the kernels it is employed

in, namely lseaiK and adderrorK and thus its computa-

tional cost is included in the corresponding cost reported

in Fig. 5 for the L-SEAI and adderror processes. Note

here that the L-SEAI process incorporates lines 1-3 of

Fig. 4 and additionally a single-value D2H copy, which

accounts for 0.24% of the total time. In the case of the

GPU implementation more than 30% of the computa-

tion time is consumed on filtering operations, namely the

convNoSepK displayed as bp-flt (back-projection filter)

and convColsK, convRowsK shown as blr-flt (blur filter)

in Fig. 5. There is also a noticeable discrepancy between

the same filtering kernels on the two devices tested.

Since the convNoSepK requires 25 pixel reads per input

sample, its performance is texture memory bandwidth

bound and the kernel reaches the limit of 232.7 GB/s

on the GTX 550 Ti (680.7 GB/s on the GTX 960).

The utilization is more balanced in the cases of separa-

ble convolution kernels; in the case of convRowsK the

performance is compute-bound because all the texture

fetches refer to sequential addresses while the convColsK
displays a memory-bound performance. The memory

transactions that do not belong to the kernels have a

significant cost, i.e., they account for approximately 26%

of the total computation time. Specifically, the H2D and

D2H transfers - related to transferring the LR image to

and the HR result from the device - are obligatory and

apart from the already adopted page-locked memory

approach there cannot be further improved. There is

also a negligible amount of time related to two single-

value D2H transactions of the integer reduceK results.

Intra-device transfers though (denoted as D2D in Fig.

5) can be minimized as they pertain to copying data to

texture-bound memory.

The following subsection will describe and classify

the performed optimizations based on their scope, as

algorithmic-level and platform-dependent. Moreover, it

will evaluate these ameliorations by comparing the rel-

ative performance gains against the proposed baseline

L-SEABI implementation. All modified kernels will be

denoted by prepending “m” on their symbolic names.

4.2.1 Algorithmic-level optimizations.

Optimizations at the algorithm’s level are achievable

because the proposed technique’s goal is the single it-

eration execution of L-SEABI assuming a priori that

the adaptive back-projection of the error image occurs

in all cases. Thus, in the proposed SIL-SEABI imple-

mentation we can omit the execution of the absK in

line 9 of Fig. 4, and the second reduction kernel in line

10 both of which account on average for 3.75% of the

total execution time (l1 norm in Fig. 5) on the devices

tested. Additionally, the CxHDK kernel is modified to

limit the neighboring checks from 8 pixels to only the 4

pixels surrounding each diagonal sample. This results in

the modified mCxHDK kernel, which applies the same

averaging filter: the improvement is that it requires

2 less registers per thread, and 12 less diagonal edge-

characterization comparison operations up from 14 in

the original CxHD algorithm.

To optimize the separable convolution operations,

we first exploit the fact that our 5×5 separable Gaus-
sian kernel features symmetric coefficients. Therefore,

we can reduce the number of multiplication operations
to three per input sample by rewriting the convolution

sum as pout =h0∗pin0 +h1∗pin1 +h2∗pin2 +h3∗pin3 +h4∗pin4 =

h0∗(pin0 +pin4)+h1∗(pin1 +pin3)+h2∗pin2 , where pout denotes the

luminance of the output sample, hn and pinn , n ∈ [0, 4]
the filter coefficients and the input luminance values

respectively. Notice also that in Fig. 4 the convRowsK
kernel is always followed by decimateK. The fusion of

these two operations into the single convRowsdecK ker-

nel provides the following two benefits: a) it circumvents

the overhead of creating and executing a separate deci-

mation kernel; and b) it leads to the reduction of the

number of computations and read operations related

to convRowsK since due to the immediate decimation

process only the even numbered samples are essentially

needed. To avoid thread divergence we follow a similar
approach to Eq. 1: we employ the LR thread parti-

tioning scheme and fetch the even samples from the

texture-bound buffer as follows:

pinn = tex2D(texref, tx∗2 + n−2, ty∗2), n ∈ [0, 4] (2)

Title Suppressed Due to Excessive Length 9

Table 3: Separable convolution PTX ISA instruction

type, amount ran and associated throughput per arith-

metic/device.

blr-flt Arith. Instr. Type Run ops/cycle/MP
int � float 550Ti 670

and.b32 � and.b16 5 48 � 48 160 � 160
add.s32 � add.ftz.f32 2 48 � 48 160 � 192

mul.lo.s32 � mul.ftz.f32 1 16 � 48 32 � 192
mad.lo.s32 � fma.rn.ftz.f32 2 16 � 48 32 � 192

shr.u32 � cvt.rzi.ftz.u32.f32 1 16 � 16 32 � 32
- � cvt.u16.u32 5 - � 16 - � 32
- � cvt.rn.f32.u16 5 - � 16 - � 128

where tex2D is the two-dimensional texture lookup

CUDA function and texref is the texture-bound device

array containing the column-filtered HR construction.

4.2.2 Platform-Dependent and Lower Level

Optimizations.

More specialized optimizations can be applied through

the use of specific CUDA API code modifications by

studying the proposed implementation both at a high

(CUDA C code) and at a low level (PTX ISA code). The

GPU execution analysis in this work (Fig. 5) showed

that most of the processing time is consumed on the

non-separable 5×5 filtering operation during the L-

SEABI refinement phase. Since the overall performance

is bounded by the memory bandwidth, convNoSepK
can be improved by using shared memory architecture.

We employ the scheme that Eklund et al. proposed

in [44] since this scheme is compatible with all of our

devices: i.e., blocks of 32×32 threads transfer an image

window of 96×64 samples to the shared memory prior

to performing unrolled 2D convolution. Note that the

GTX 960 has 33% larger shared memory size, a fact

which allows increasing the window to 128×64 samples.

The detailed execution analysis of the proposed sepa-

rable kernels revealed that their performance is compute-

bound. As documented in [45], increasing the instruc-

tion level parallelism (ILP) in CUDA can improve the

performance even with fewer threads. In our case, we

modify the convRowsK and convColsK, so that each

thread fetches four 5-pixel sets from four consecutive

blocks, performs four convolution sums and stores four

results. This increases the number of required registers

per thread from 12 to 28 on the GTX 550Ti, from 14

to 31 on the GTX 670 and from 13 to 31 on the GTX

960. On the Fermi-based device the modified kernels

then reach the texture memory bandwidth limit; to fur-

ther improve the performance we turn our attention

to the use of shared memory by modifying the nVidia

separable convolution code sample [46]. Reworking the

kernels for ILP=4 causes the texture memory band-

width to exceed 800GB/s on the GTX 670 without

hindering performance while the Maxwell-based device

can reach 534GB/s. In [6], the operations of L-SEABI

were designed to rely on integer arithmetic excluding

the separable filtering process. In particular, to enhance

the output quality convolution is applied by using the

〈h0, h1, h2〉=〈0.00257, 0.165795, 0.664904〉 filter and con-

verted the result back to integer.

Conveniently, the modern GPUs incorporate native

floating-point units that provide higher multiplication

performance than the use of integer operations; the

respective throughput of 32-bit floating-point multiply-

add operations (ops) per clock cycle (cc) and multi-

processor (MP) is 48, 192 and 128 on the GTX 550Ti,

the GTX 670 and the GTX 960 respectively. Note

that we have to explicitly cast all coefficients and vari-

ables as floating-point in the convolution code, other-

wise the compiler will assume 64-bit precision, which

has quite lesser throughput (4, 8 and 1 ops/cc/MP

respectively). To comply with the integer storage/op-

erations of the proposed implementation though, ad-

ditional type conversions are required. The review of

the PTX ISA generated code reveals that apart from

the computation instructions, the floating-point con-

volution requires 5 conversions from 32-bit to 16-bit

unsigned numbers, 5 conversions from 16-bit to 32-bit

floating-point and 1 conversion from floating-point to

32-bit unsigned. The generated instructions considering

the integer and the floating-point separable convolution

implementation are shown in Table 3 juxtaposed by

their respective throughput. On the Fermi and Kepler

devices the throughput of 32-bit integer multiply-add

operations/cc/MP is 16 and 32 respectively [47]. To

compare against the floating-point filtering process we
compute integer Gaussian coefficients by multiplying

the original coefficients with 223, resulting in the filter

〈h0, h1, h2〉= 〈21559, 1390789, 5577619〉. Note that the

division operation is converted to an arithmetic shift

by the compiler (shr.u32). Also, Table 3 shows that

while the floating-point multiplication throughput is

considerably higher compared to integer operations, the

amount of conversions is non-trivial and therefore, the

impact on the computation time requires evaluation.

The GTX 960 has in some cases lower throughput than

the compute-capability 3.0 GTX 670 - this is mitigated

by the Maxwell-based device’s reduced instruction la-

tency and stall cycles.

In this work, the upsampling optimizations mainly

target the lseaiK and CxHDK and they are based on

lower level PTX ISA observations. Notice that the orig-

inal L-SEABI algorithm requires a square root to com-

pute the edge characterization threshold [6]. On CUDA,

10 Georgios Georgis et al.

the floating point square root is computed as a reciprocal

square root followed by a reciprocal. In PTX ISA this is

translated as the sqrt.approx.ftz.f32 instruction. Due to

the integer nature of L-SEABI and the threshold being

T =
√

T VLR

WH where T VLR =rdc res1 (Fig. 4) we consider

two alternatives: a) set T = T VLR

WH and then compute the

square of the luminance differences in order to character-

ize edges, b) compute the reciprocal square root of WH
T VLR .

Besides these two options, the following subsection will

evaluate the performance of a lower precision threshold

computation, which employs integer division. Finally,

based on the generated PTX ISA code we rewrite all

comparisons as Boolean statements and fine-tune all

comparison operations in mlseaiK and mCxHDK to elim-

inate nested if statements by applying branch fusion.

As an example, Fig. 6 shows how we convert the com-

putation of HH output samples poutHH in the mCxHDK
kernel (lines 5-10) to a divergent-free optimized version
(line 13). Notice that in this case we have to explicitly

define two additional Boolean conditions (lines 11-12)

to procure the same result. Through this optimization

we seemingly convert the branch statement to a sum

of integer products; actually though, only one of the
products contributes to the poutHH value for any given

sample. Moreover, since every left operand of these mul-

tiplication operations evaluates to either 0 or 1 we can

improve the performance by converting each Boolean

multiplication to two bitwise and one integer addition

operations as follows: cnd ∗ flt = [!(cnd) + 1] & flt,
where cnd ∈ {0, 1} is the Boolean condition, flt is the

integer result of the filter, where ! is the bitwise NOT

and & is the bitwise AND operator. Both of these oper-

ations have significantly higher throughput compared

to the integer multiplication, especially on more recent

devices [47].

Regarding the remaining kernels, the proposed op-

timizations target the computation of the absolute dif-

ference values in the mgradientComputeK, mlseaiK and

mCxHDK kernels. To that end, for the computation of

the absolute difference |dif | between pixel values pin0 and

pin1 , we utilize the usad integer intrinsic of CUDA as:

|dif |= |pin0 − pin1 |= usad(pin0 , p
in
1 , 0). We also compare

the performance of usad against four distinct implemen-

tations of the absolute function: i) the fabsf function, ii)

the vabsdiffu4 intrinsic, which computes per-byte un-

signed absolute difference in an SIMD fashion; iii) an in-

line implementation using the ternary operator (denoted

as ABSt) and iv) an inline implementation using shift

operations (ABSs = [dif + {dif >>31}] ∧ {dif >>31},
where “>>” and “∧” denote right shift and XOR oper-

ations respectively). Finally, we focus on reducing the

mCxHDK HH Computation:
Initial Boolean Conditions:

1: A>0 // condition #1, vertical edge
2: A<0 // condition #2, horizontal edge
3: B>0 // condition #3, NE direction
4: B<0 // condition #4, SW direction
Computation using nested if statements:
5: if A>0:
6: if B>0: poutHH ← bicubic filtering #1
7: else if B<0: poutHH ← bicubic filtering #2
8: else: poutHH ← bilinear filtering
9: else if A<0: poutHH ← bicubic filtering #3

10: else: poutHH ← bilinear filtering
Additional Boolean Conditions:

11: A=0 // condition #5, homogeneity
12: B=0 // condition #6, strictly vertical
Divergent-free computation:

13: poutHH ←
(cnd#1 && cnd#3) * (bicubic #1) +
(cnd#1 && cnd#4) * (bicubic #2) +
(cnd#2) * (bicubic #3) +
(cnd#6 | (cnd#1 && cnd#5)) * (bilinear)

Fig. 6: HH pixel code in mCxHDK: divergent-free com-

putation.

amount of D2D transfers by directly writing to texture-

bound memory or by employing shared memory instead.

4.2.3 Performance Evaluation

This section will first evaluate the relative performance,

i.e., the induced speedup of the proposed optimizations

against the baseline L-SEABI implementation. Second,

it will assess the computation time required to upsample

each LR input. To evaluate the performance of the pro-

posed optimizations regarding SIL-SEABI we perform

the tests on the GTX 550 Ti, representing mid-range

performance and on the GTX 670, GTX 960 VGAs

representing the high-end.

Figure 7 shows the achieved speedup per device

and kernel depending on the type of the optimization.

Algorithmic-level and Platform-dependent optimizations

are highlighted in the green and blue areas respectively.

Regarding algorithmic-level optimizations, we observe

an overall execution speedup of up to 1.29x by omitting

the absK and the second reduction kernel (single-iter

in Fig. 7). When we limit the number of comparisons

during adaptive back-projection we notice a speed im-

provement in CxHDK by up to 1.16x (cxavg in Fig. 7).

Fusing decimation with separable row convolution by the

proposed divergent-free solution (Eq. 2, decfusion in Fig.

7) produces a more pronounced speedup: convRowsK
is accelerated by over 2.7x. Note though that rewriting

the convolution computation to exploit the Gaussian

kernel symmetry does not provide additional speedup

Title Suppressed Due to Excessive Length 11

sing
le-it

er cxa
vg

dec
fusi

on

bp-
flt:

smem

blr-
flt:

ILP
4,te

x

blr-
flt:

ILP
8,sm

em

blr-
flt:

ILP
1,in

t
D2D

thre
sho

ld:
squ

are
roo

t

com
par

ison
s

intr
insi

cs
ove

rall
0

2

4

6

8

1
.2
0
5
9

1
.2
8
7
3

1
.2
6
1

1
.1
2
8
2

1
.1
6
4
7

1
.0
0
5
4

2
.9
6
9
9

2
.7
2
8
6

2
.8
9
9
6

6
.2
5
0
9

4
.6
5
3
6
.0
1
6
4

1
.6
9
3
9
-
ro
w
s

1
.6
5
1
5
-
co
ls

1
.1
5
3
2
-
ro
w
s

1
.1
4
6
8
-
co
ls

1
.0
8
0
8
-
ro
w
s

1
.1
2
2
5
-
co
ls

2
.5
9
6
5
-
ro
w
s

1
.8
4
3
9
-
co
ls

1
.2
3
8
8
-
ro
w
s

1
.0
5
8
3
-
co
ls

2
.5
5
0
9
-
ro
w
s

1
.0
4
4
4
-
co
ls

1
.0
5
4
-
ro
w
s

1
.0
7
0
1
-
co
ls

1
.0
9
2
1
-
ro
w
s

1
.0
9
2
4
-
co
ls

1
.0
3
4
3
-
ro
w
s

1
.0
1
2
2
-
co
ls

4
.7
1
2

4
.8
3
9
9

5
.2
2
3
4

1
.0
0
9
1
-
rs
q
rt
/
sq
rt

1
.1
0
1
2
-
rs
q
rt
/
n
o
sq
rt

1
.1
2
3
7
-
lr
rs
q
rt
/
rs
q
rt

1
.0
0
4
7
-
rs
q
rt
/
sq
rt

1
.1
1
5
2
-
rs
q
rt
/
n
o
sq
rt

1
.0
8
9
1
-
lr
rs
q
rt
/
rs
q
rt

1
.0
0
7
7
-
rs
q
rt
/
sq
rt

1
.0
1
9
7
-
rs
q
rt
/
n
o
sq
rt

1
.0
4
2
8
-
lr
rs
q
rt
/
rs
q
rt

1
.3
4
9
8

1
.2
8
6
2

1
.2
3
1
7

1
.0
7
7
6

1
.1
2
9
8

1
.0
0
6
2 2
.3
1
3
9

2
.2
3
9

2
.0
4
2
9

S
p
ee
d
u
p

Optimized SIL-SEABI processes and kernels on the GTX 550Ti, GTX 670 and GTX 960 - all resolutions and content

Fig. 7: Optimized GPU Analysis for SIL-SEABI speedup per kernel involved vs the baseline implementation,

averaged over all resolutions and image content.

as the compiler automatically generates identical PTX

ISA code in both cases.

Platform-dependent optimizations provide the high-

est speedup as the remaining bar graphs show. Specifi-

cally, the use of shared memory in mconvNoSepK (shown

as BP-flt: smem in Fig. 7) is critical, increasing the per-

formance of the original kernel by 4.65x on the GTX

670 and more than 6x on the GTX 550Ti and GTX 960,

which have less texture memory bandwidth. Note here

that taking advantage of the increased shared memory

of the GTX 960, i.e. modifying the method by Eklund et

al. [44] to effectively process a 124×60 area and thereby

increasing ILP to 8 compared to 6 slightly increases

occupancy by 1.5%; though it does not produce a signifi-

cant performance advantage as a result of the small 5×5

filter size. When considering texture-based separable

convolution, increasing the ILP to 4 for each thread in

the convColsK and convRowsK kernels results in over

1.6x speedup on the GTX 550Ti and 1.15x on the GTX

670 (blr-flt: ILP4,tex in Fig. 7). The texture-based im-

plementation can be further enhanced by employing

shared memory combined with doubling the ILP (blr-flt:

ILP8,smem in Fig. 7, [46]). Due to the small radius

of our Gaussian convolution filter, the high register

bandwidth of the GPUs and the spatial locality of the

convolution process, the acceleration achieved is more

prominent when modifying convRowsK to use shared

memory (speedup of approximately 2.6x). This level of

parallelism is the maximum that can be achieved for

these kernels on the devices tested, as increasing the ILP

to a greater extent results in arithmetic latency due to

decreased warp occupancy. Evaluating the use of integer

operations on the SIL-SEABI filtering process confirms

the observations of Table 3: the absence of additional

conversion instructions required for floating-point filter-

ing slightly favour our integer implementation by 1.05x

on average. The speedup related to Device to Device

(D2D) memory transfers emphasizes the importance of

memory latency in GPUs; using a single D2D memory

transfer (i.e., by directly writing to texture-bound mem-

ory or using shared memory instead) reduces the time

spent on D2D transfers by approximately 5x compared

to our original GPU implementation.

Next, we evaluate the proposed optimizations per-

tinent to the lseaiK and CxHDK kernels. Omitting a

reciprocal computation provides a negligible advantage

compared to the GPU floating-point square root imple-

mentation (rsqrt/sqrt in Fig. 7), which is justified as

there is only a single threshold computation involved

in the whole lseaiK kernel. Notice that avoiding the

square root altogether substitutes a single reciprocal

square root with 6 integer multiplication instructions

required for comparison reasons and thus decreases the

instruction throughput on GPUs (rsqrt/nosqrt in Fig.

7). Hence, the reciprocal square root provides the high-

est performance when computing threshold T in lseaiK.

We can also exchange accuracy for a marginal perfor-

mance increase by using integer arithmetic on the WH
T VLR

division as lrrsqrt/rsqrt in Fig. 7 suggests. Branching op-

timizations in difference comparisons are used through-

out lseaiK and CxHDK (averaged as “comparisons” in

Fig. 7); particularly these depicted in Fig. 6, display

speedup of up to 1.35x on average for the aforemen-

tioned kernels. Performance increase is more prominent

on the CxHDK kernel compared to lseaiK (1.48x vs

1.15x on average) because the compiler derives predi-

cated instructions for the latter due to the absence of

multiple/nested conditions in the original algorithm [6].

12 Georgios Georgis et al.

Also, the perceived gains are more pronounced on the

lower compute capability GTX 550Ti GPU, as the GTX

670 and GTX 960 can schedule four warps and two in-

dependent instructions per warp per cycle ([48]). To

conclude our relative performance evaluation, we assess

the five different implementations of the absolute dif-

ference as mentioned in Section 4.2.2. According to our

evaluation regarding lseaiK and CxHDK (averaged as

“intrinsics” in Fig. 7), the usad solution accomplishes

the highest performance. The speedup we measured

is consistent between devices and kernels, i.e., 1.0617x
compared to the fabsf function, 1.1416x compared to

the ternary operator (ABSt), 1.0719x compared to the

integer shifts implementation (ABSs) and 1.1591x com-

pared to the vabsdiffu4 intrinsic (supported on the

Kepler and Maxwell devices). Notice that even though

the latter SIMD operation has an instruction throughput

of 160 ops/cc/MP on the GTX 670, when considering

lseaiK the usad solution translates to only 4 sad.u32

instructions. These 4 sad.u32 instructions have the same

throughput as 4 shl.b32 instructions required to employ

the SIMD intrinsic. Studying the PTX ISA code though,

reveals that the vabsdiffu4 implementation requires 8

additional and.b32, 2 additional shl.b32 and 6 additional

or.b32 instructions which rationalize the performance

penalty.

Finally, to evaluate the absolute performance of the

proposed SIL-SEABI implementation we set apart H2D

/ D2H transfers, thus measuring the computation time

consumed only by the upsampling kernels. To that end,

we compare against our own implementations of separa-

ble 4-tap and 6-tap integer kernel interpolation, both

of which represent two of the simplest upsampling solu-

tions. We also compare against the GPU implementation

of DPSR, representing the state-of-the-art. Evaluation
results are plotted in Fig. 8 where computation time re-

quired to upsample each image by 2 in both dimensions

is displayed as the average for every image resolution in

the experimental dataset (Sec. 3). We note here that al-

though the GTX 670 has approximately 24% more cores

compared to the GTX 960 it achieves similar perfor-

mance, i.e., less than 10% discrepancy and it is 14.77%

faster when executing the SIL-SEABI. This is mainly

attributed to the benefits of the internal design of the

Maxwell architecture: each Streaming Multiprocessor

has a power of two number of cores, functional units

have a dedicated scheduler, there are 8 Load/Store units

per 32 cores (compared to 16 per 96 cores for Kepler)

and finally, more registers per core.

As expected, the simple interpolation kernels prove

to be the fastest option; upsampling to 3840×2160 from

1920×1080 by employing Bicubic interpolation requires

up to 0.4ms on the GTX 670 and up to 1.14ms on the

176
×14

4

352
×28

8

720
×57

6

128
0×7

20

192
0×1

088

384
0×2

160

10−1

101

103

105

107

Output Resolution (f=2)
C
o
m
p
u
ta
ti
o
n
T
im

e
(m

s)

Super-Resolution GPU Performance

GTX670: Four-tap Six-tap

SIL-SEABI DPSR

GTX550 Ti: Four-tap Six-tap

SIL-SEABI

Fig. 8: SIL-SEABI on GPU: Execution Time (f = 2).

GTX 550 Ti. The 6-tap filter is 1.4x slower on average,

a result which is consistent with the filtering kernel

ratio. Thus, when considering 1920×1080 input, our

simple interpolation kernels attain a performance of 698

frames per second (fps) on the mid-range GPU and up

to 1718 fps on the high-end device. Also, it is antici-

pated that these methods perform approximately an

order of magnitude faster than SIL-SEABI (5.1x and

7.6x considering 6-tap and 4-tap interpolation respec-

tively). Still, our SIL-SEABI implementation remains
suitable for real-time 1080p processing as it achieves

109 fps on the GTX 550 Ti and 345 fps on the GTX

670. Contrastingly, Super-Resolution using Deformable

Patches [9], consumes four orders of magnitude more

time when upsampling to 176×144 and up to six orders

of magnitude in the case of 2160p output. The memory

footprint of SIL-SEABI is also relatively small and com-

parable to the 46MB of the simple methods because it

requires only 151MB of device memory; hence, it can be

executed on all modern discrete GPUs. DPSR execution

on the other hand is significantly restricting because it

consumes at least 466MB (176×144) and up to 1452MB

of device memory for larger inputs.

5 Acceleration of L-SEABI on FPGA

The proposed hardware acceleration involves the parallel

architectural design, the parametric VHDL development,

Title Suppressed Due to Excessive Length 13

and the deployment of L-SEABI on a variety of FPGA

devices. The purpose of implementing L-SEABI in a

parametric fashion on various FPGA devices is to assess

its performance and power dissipation with multiple

parallelization factors and FPGA technologies. The fol-

lowing subsection describes the proposed architecture

and the parallelization techniques devised to accelerate

L-SEABI, whereas the second subsection presents our

design exploration and the implementation results.

5.1 Parallel architecture design of SIL-SEABI

The super-resolution algorithm in [6], besides improved

quality, targets parallelization amenability and low-cost

implementation on hardware, especially on reconfig-

urable platforms with limited memory resources, such

as the FPGA. Hence, compared to similar and more

sophisticated super-resolution algorithms, SIL-SEABI

avoids highly-involved mathematical/statistical solu-

tions, abundant dependencies among the calculations, or

increased storage of side information (e.g., dictionaries).
Instead, SIL-SEABI promotes locality and regularity.

The proposed architectural design relies on extensive

pipelining of the computation, both on pixel basis and

on task level. It is based on a technique involving the

continuous processing of the image in a pixel-by-pixel

basis by using a long pipeline, which lines up all arith-

metic operations required to complete a given task of

the algorithm for a single pixel. Note that the term

task refers here to any elementary, conceptually distinct,

transformation of the image, such as blurring, decima-

tion, 2D convolution with a fixed kernel, calculation of

image derivatives, etc. Generally, the hardware cost of a

pixel-based pipeline reduces to the cost of a single-pixel

processing engine and it is independent of the image

size. In specific cases, the pipeline must cache internally

a group of pixels (to operate on a local area of the

image, e.g., compute derivatives) the number of which

could be proportional to the width of the image (e.g.,

when reading the pixels in raster-scan order). In the

case of a pipeline designed optimally to achieve 100%

utilization, the throughput of the pixel-based pipeline

increases to one pixel per cycle and allows the entire

task to complete in W ×H + L cycles, where W is the

image width, H is the image height, and L is the latency

of the pipeline. In other words, we design the pipeline

so that it will complete one algorithmic task/iteration

in a single burst read of the image. To achieve the afore-

mentioned throughput, we parallelize the calculations

required for each pixel, both in terms of arithmetic oper-

ations within a formula evaluation, as well as in terms of

partial products within a task. That is, considering the

Fig. 9: Proposed architecture of a serial-to-parallel buffer

for 2D raster-scanning of the image with a NxN sliding
window

latter, we compute in parallel the vertical and horizon-

tal derivatives of the pixel, we compute in parallel the

multiple FIRs considered by our adaptive upsampling

mechanisms, we compute in parallel the two 1D convo-

lutions of a separable kernel by using its 2D equivalent

kernel, etc. The key idea in our parallelization approach

is to operate concurrently on a local area of the im-

age and complete a pixel transformation, virtually, in a

single cycle. To facilitate such concurrency, we design

and integrate in our pipeline a serial-to-parallel buffer,

which inputs one sample per cycle (equal to the input

rate of the pipeline) and outputs N × N samples per

cycle. Figure 9 depicts the architecture of the proposed

buffer interconnecting in series N FIFO memories with

N × N registers. We set the depth of each FIFO to

W −N and we feed the buffer with pixels/samples in

raster-scan order. As a result, the N × N output of

the buffer will scan the image in a raster-scan order

providing one distinct N × N window per cycle. The

proposed design uses the minimum amount of connec-

tions (1 input and 1 output per component, excluding

the unavoidable output ports of the buffer) and the

minimum amount of flip-flops (equal to the number of

parallel output ports). Subsequently, in a single cycle,

the N ×N samples are forwarded to the processing part

of the pipeline, where we perform parallel calculations

by using multiple arithmetic units interconnected ac-

cording to the implemented arithmetic formula. Figure

10, on the left, depicts a processing part performing

generic convolution; we use M = N ×N independent

14 Georgios Georgis et al.

Fig. 10: Architecture of two fine-grain pipelined pro-

cessing parts which follow a serial-to-parallel buffer to

perform 2D convolution (left) or adaptive FIR upsam-

pling (right)

constant multipliers, each developed as a fine-grained

pipeline with 2-4 stages depending on the width of the

xi inputs, and a fine-grain pipelined adder tree of height

logM . This configurable engine can implement blurring,

Laplacian, Derivatives of Gaussian, etc. Figure 10, on

the right, depicts another processing part performing

adaptive upsampling. We use multiple FIRs working in

parallel to perform bilinear and bicubic filtering in a
fine-grain pipelined fashion. Finally, we select the high-

est quality output via a multiplexer controlled by the

if-clauses detecting the dominant local orientation/edge

(according to the rules of the construction phase of L-

SEABI, or the CxScale technique). Altogether, a long

pipeline consisting of the buffer and its processing part;
it will input one datum per cycle and it will output

one result per cycle in a continuous flow (with very

small gaps at regular time intervals corresponding to

the wrap-around step of our 2D scanner at the end of

each image row). A substantial fraction of the latency is

equal to the time required to initially fill the FIFOs of

the buffer and is negligible when compared to the total

execution time (e.g., 0.4% when blurring a 1920x1080

image with a 5x5 kernel).

On top of pixel-based pipelining, we apply pipelining

at task level by connecting in series the five distinct en-

gines developed for the five tasks of SIL-SEABI. Figure

11 depicts the entire architecture designed in a “con-

tinuous flow transformation” approach. That is, every

sample/pixel is forwarded directly to the next stage for

further processing to complete the entire SIL-SEABI

in a single pass of the long pipeline, without any in-

termediate caching/delays. The architecture features

100% utilization and, at any time instant, it processes

concurrently hundreds of samples throughout its length

(within the fine-grain pipelined PUs of the five engines).

At the first stage (figure 11), we perform an initial

upsampling of the image according to L-SEABI ’s con-

struction phase; we employ a serial-to-parallel buffer (B)

to forward 4x4 low-resolution pixels per cycle to two

processing parts, i.e., to the parallel FIRs doing adaptive

upsampling (PUs) and to a smaller pipe accumulating

image derivatives and adjusting L-SEABI ’s threshold

according to the total variation of the image (we use the

total variation of an image stripe to predict the total

variation of the next stripe, on-the-fly). The threshold

is returned to the main engine, which outputs a local re-

gion of 2x2 high-resolution pixels per cycle. The purpose

of increasing the pipeline paths to 4 is to avoid multiple
clock domains (we now operate in 1/4 clock frequency

with enough slack for our critical paths) and also to ex-

ploit the parallelization capabilities of HW design. The

four remaining stages perform SIL-SEABI ’s refinement

phase. More specifically, at stage 2, we perform low-pass

filtering and decimation of the HR image to output one

LR pixel per cycle. Notice that the quadruplet input

to stage 2 is given to a serial-to-parallel buffer sliding

quadrupled words and providing a 3x3 quadruplet out-

put, which contains the 5x5 pixel region to be blurred;

due to this technique, our window slides by two pixels

per cycle facilitating the decimation of the image by 2

without decreasing the engine’s output rate in half (we

achieve 100% utilization). The error of the reconstructed

pixel is forwarded to stage 3, which performs adaptive

upsampling similarly to stage 1, however, according to

the CxScale rules. The HR results are forwarded to stage

4 in a 2x2 format via 4 parallel paths. Stage 4 employs

a serial-to-buffer providing 3x3 quadruplets per cycle,

i.e., a local region of 6x6 samples, which itself contains

four regions of 5x5 samples. In parallel, the four regions

are multiplied with a 5x5 Laplacian kernel, each, such
that the engine will output 4 HR sharpened samples per

cycle. At the final stage, we add the 4 HR samples to

the 4 HR pixels delayed after stage 1 to refine the HR

image and complete the SIL-SEABI algorithm. Notice

that, depending on the application, the 2x2 pixel output
of the architecture can be easily transformed to a single

raster scan port (with 4x faster clock rate) by employing

a RAM buffer to temporarily store two HR image rows.

Also notice that the above described architecture can be

easily modified to support more iterations of L-SEABI;

we can employ an external memory to store the entire

image iYHR output from the pipeline after each iteration

i, such that we can bypass stage 1 and feed iYHR back

to the pipeline, together with YLR.

5.2 Design exploration and implementation results

The proposed architecture was developed in parametric

VHDL to allow the straightforward deployment of L-

SEABI on various diverse FPGA devices and adaptation

Title Suppressed Due to Excessive Length 15

Fig. 11: Architecture of an L-SEABI super-resolution engine with 5 fine-grained pipelines including serial-to-parallel

buffers (B) and processing parts with parallel units (PUs). The rate varies from 1 to 4 samples/cycle depending on

spatial resolution.

to distinct application requirements. The parameters

include the datapath widths, image size, kernel sizes,

and moreover, the parallelization factor P of L-SEABI

on image level. Parallelization on image level is yet an-

other capability of HW design, besides those described

in the previous subsection, which refers to the number

of images or image stripes being processed concurrently.

That is, we deploy P individual L-SEABI pipelines on

the FPGA and we feed them with distinct horizontal

stripes of the image. Each stripe has height H/P +O

pixel rows, where H is the input image height and O is
the number of rows used to overlap successive stripes

(in order to make the parallel algorithm functionally

equivalent to the original execution, we must extend the

borders of each stripe to slide the convolution kernels

seamlessly between stripes). In the current paper we

assume 8-bit pixels, input image resolution 1920x1080,
overlapping O = 9 due to the size of L-SEABI ’s kernels,

and also, we abstract away the I/O functions of the

FPGA to focus on the cost of the actual algorithm in

terms of resource utilization (we assume that I/O is han-

dled externally, depending on the application). We show

how multiple pipelines can fit in various FPGA devices

(with some slack in the utilization, e.g., 100 RAMBs,

for other hypothetical components of the application,

e.g., the I/O controller). For this purpose, we implement

the architecture on 10 FPGA devices representing four

technology generations (Xilinx Virtex 5, Virtex 6, Artix

and Virtex 7, as well as Ultrascale) and we explore the

performance of L-SEABI by varying the parallelization
factor P from 1 to 29 depending on the size of the

underlying FPGA device.

Implementation results are summarized in Table 4,

which includes the number of LUTs and RAMB18s as a

metric for evaluating the FPGA resources, as well as the

total execution time and power required to upsample a

1920x1080 image to 3840x2160 pixels with the maximum

achievable clock frequency. In the upper part of Table

4, we report absolute numbers for a single L-SEABI

pipeline implemented on low-range low-price devices

representing 4 FPGA families/generations (Virtex 5,

Table 4: FPGA resources vs. execution time (a
1920x1080 image is input to various devices with various

parallelization factors P and f = 2.)

device P LUT RAMB18 power time

xc5vlx30t 1 3753 64 0.9 W 8.3 ms
xc6vlx75t 1 3493 64 2.3 W 6.8 ms
xc7a100t 1 3501 64 0.5 W 8.2 ms
xcku035 1 3637 64 1 W 5 ms

xc5vlx110t 4 22% 89% 3 W 2.7 ms
xc5vlx330t 8 15% 79% 7.5 W 1.5 ms
xc6vlx75t 3 22% 61% 3 W 3 ms
xc6vlx240t 11 26% 85% 7.8 W 1 ms
xc6vlx550t 18 18% 91% 11 W .71 ms
xc7a100t 3 16% 71% 1 W 3.5 ms
xc7vx485t 16 19% 49% 5.5 W .70 ms
xc7v2000t 29 9% 71% 11 W .48 ms
xcku035 12 24% 68% 6.2 W .65 ms

6, 7, and Ultrascale). These implementations achieve

120–200 fps while dissipating only 0.5–2.3 Watts (esti-

mated with the XPower Analyzer tool of Xilinx). The

power dissipation for each device depends on its tech-

nology node and die size (static power), as well as on

the operating frequency and utilization ratio (dynamic

power). The maximum frequency for the single-pipeline

implementation ranges in 250–420 MHz among devices

and decreases to 185–300MHz when placing/routing
multiple pipelines in each device (most often decreases

to 200−220 MHz). The lower part of Table 4 shows how

multiple pipelines can fit in each device. Column 2 re-

ports the maximum pipelines fitted in the device, while

columns 3 and 4 report the utilization of the device’s

LUTs and RAMBs. We note that the bottleneck is usu-

ally in the on-chip RAM (except for the large devices,

which run out of IOBs).

According to the above results, when increasing the

parallelization factor P in each FPGA family we achieve

an almost linear acceleration of L-SEABI ; we pay a

time penalty due to the lower achievable frequency (due

to the high utilization ratio of the device) and due to

the overhead of overlapping the image stripes to achieve

16 Georgios Georgis et al.

functionally equivalent super-resolution (the neighbor-

ing pipelines process partially common inputs). Roughly,

for small to large factors P , the acceleration ranges from
3
4P to 1

2P . In the most expensive FPGA device, Virtex7

2000T, the architecture achieves 2083 fps for P = 29 (the

time overhead of the image level parallelization increases

at around 25% due to the extensive overlapping of the

29 stripes). In these multi-pipeline implementations, the

power dissipation ranges from 1 to 11 Watts, while

the energy per image decreases roughly in half when

using newer generation FPGAs (e.g., Virtex7 versus Vir-
tex5/Virtex6). Overall, by using a mid-price xc6vlx240t

FPGA we can achieve 1000 fps with less than 8 Watts,

whereas a low-price xc7a100t FPGA will provide 285 fps

for only 1 Watt. Hence, the proposed acceleration can

support a plethora of applications, single- or multi-view,

high- or ultra-high definition, achieving real-time and

low-power processing.

Compared to other super-resolution implementations

on FPGA in the literature, the proposed single-pipeline

implementation on xc6vlx240t requires almost 5x fewer

logic resources than the similar module in [18]. The

proposed 3-pipeline implementation requires similar re-

sources with [19] to achieve one order of magnitude

faster execution on the same xc6vlx75t FPGA device.

The proposed 11-pipeline implementation on xc6vlx240t

consumes a similar number of LUTs with that of the

4-core UHDTV case of [20] to achieve one order of mag-

nitude faster execution than [20] running on Altera Aria

II FPGA. Finally, when comparing to more demand-

ing motion-estimation based SR implementations, the

proposed FPGA design proves to be significantly faster

and considerably cheaper: for QCIF image upsampling,
a single-pipeline on Virtex5 provides up to 400x more

fps with around 3x less LUTs than [49] (note however

that, in general, motion-estimation based SR provides

higher quality results).

6 Application of the proposed acceleration

techniques to Stereo Correspondence

algorithms

To improve our evaluation study and support the con-

clusions drawn from the analysis performed on L-SEABI

regarding the efficiency of our acceleration techniques

and the comparison of the computational platforms, we

extend our work to consider a distinct type of image

processing scenario: the stereo correspondence problem

which, in general, requires more intensive computations

compared to super-resolution. Most often, the dense

stereo correspondence algorithms base their execution

on intensive block-wise comparisons between two im-

ages by following an iterative full-search approach. This

distinctive feature will allow us to evaluate our paral-

lelization techniques and HW platforms in a algorithmic

case that requires increased data caching and data reuse,

while it offers fewer opportunities to do calculations on-

the-fly due to limited spatial localities. In the current

section, we consider the most representative and well-

known algorithm of its category [50], the Disparity.

The Disparity algorithm considered here, has input

one stereo image of 2×W×H 8-bit pixels, in total, to

provide as output a W×H disparity map with quarter

pixel accuracy [51]. Internally, the module produces two
W×H disparity maps, one after the other (the first based

on the left image and the second based on the right im-

age of the stereo pair), which are then cross-checked to

retain only those disparities that are consistent in the

two maps. To produce the left-based map, the algorithm

assumes rectified images to operate in a dynamic pro-

gramming and iterative fashion; at each iteration, the

right image is shifted horizontally by one pixel and sub-

tracted from the left image to store W×H differences in

a distinct layer of the Disparity Space Image (DSI) struc-

ture. After D iterations, where D denotes the amount

of the examined disparities/depths, the algorithm com-

pletes the DSI construction having stored D×W×H
values. Subsequently, these values are aggregated within

each of the D layers by sliding a 7×7 window over the

entire layer and computing a Gauss-weighted sum of

every underlying 7×7 group of differences. Each sum

represents a similarity metric between a left image re-

gion and a right image region, i.e., a means to deduce

the apparent displacement of a left image pixel on the

right image plane. More specifically, for each pixel of

the left image, the algorithm selects the minimum of
the D metrics calculated across the depth ray (across

the epipolar line of the pixel, or more practically, across

the D layers of the DSI) to deduce its disparity result.

Finally, to achieve sub-pixel accuracy, the algorithm re-

fines each disparity result by performing a 1D parabola
fitting on the 3 values surrounding the detected min-

imum (across the depth ray). The right-based map is

produced analogously by shifting the left image instead

of the right.

6.1 GPU Implementation

We design the disparity implementation of CUDA em-

ploying distinct kernels to facilitate profiling and fol-

lowing the optimizations described in Section 4. Figure

12 shows the kernel execution scheme on our GPU im-

plementation. Initially, we copy the stereo image pair

to the Device from page-locked Host memory. Using

the kernel buildRightCubeK we compute the difference

between the right and left images (R−L), creating a

Title Suppressed Due to Excessive Length 17

Fig. 12: Disparity on CUDA: GPU flow and kernels.

cube of D, W×H slices in the process (D is the number

of disparities). Next, the kernel aggrCubeK performs

per-slice 3D filtering on the cube by employing a 13×13

non-separable filter. Due to the relatively large filter

size, we choose the shared memory scheme of Eklund

et. al [44] for this process, and copy the result onto a

second cube. In the case of the GTX 960 we modify

the above method to compute 116×52 valid responses
with each thread processing 8 values. Afterwards, the

kernel cubeMinK searches on the z-axis of the filtered

cube to locate the minimum disparity per element in

each W ×H slice, i.e., also the distance between two

consecutive elements on the z-axis when using a seri-

alized buffer. The output (minimum index) is stored
into a W×H buffer. Note that since D is expected to

be at least two orders of magnitude smaller than the

number of elements in each slice, finding the minimum

index does not require a parallel reduction kernel. The

same process (Difference, Expansion, Convolution and

Minimum Search) is repeated for the cube containing

the left and right pair (L−R) difference. The kernel

crossCheckK, similarly to Fig. 6, compares the indices of

minimum disparity as obtained by both the cubeMinK
kernels. The Boolean condition result is then multiplied

by the minimum disparity on the left cube so that dispar-

ities in non-equal indices are nullified. Finally, through

kernel parPeakInterpK we compute the parabolic peak

interpolation of disparities. Overall, the aforementioned

implementation employs 2, W ×H×D-byte cubes as

only the L−R difference values affect the interpolation

result.

We also consider an alternative disparity implemen-

tation, which allocates only a single cube. In such a

version, we store the convolution result of each cube

slice into a separate W×H buffer and copy the result

101 102

100

101

102

103

D

C
o
m
p
u
t
a
t
io
n
T
im

e
(
m
s
)

Disparity CUDA Performance (10≤D≤200)

GTX960: 384×288

1120×1120

1390×1110

1800×1500

GTX550Ti: 384×288

1120×1120

1390×1110

1800×1500

GTX960 [12]: 384×288

1120×1120

1390×1110

1800×1500

GTX550Ti [12]: 384×288

1120×1120

1390×1110

1800×1500

Fig. 13: Execution Time of Disparity on CUDA.

back to the corresponding memory position inside the

cube. This version saves W ×H×D×4 bytes of de-

vice memory at the expense of D, W×H×4-byte D2D
transfers. According to our experimentation, all two-

dimensional kernels are based on 32×4 threads for block

partitioning on the GTX 670, GTX 960 and the 32×8

scheme on the GTX 550Ti. The kernels that involve 3D

processing use one thread on the z-axis and a number

of blocks equal to D. Filtering kernels rely on blocks of

32×32 threads.

6.1.1 Performance Evaluation

To evaluate the performance of our CUDA disparity

implementations, we measure the execution time from

buildRightCubeK to parPeakInterpK excluding D2H/H2D

transfers for 10 ≤D ≤200 on the aforementioned GPUs.

We use 12 images from the Middlebury stereo dataset

[52,53,54], their resolution ranging from 348×288 to

1800×1500 pixels. Specifically, we employ the books,

computer, cones, dolls, drumsticks, dwarves, laundry,

moebius, reindeer, teddy, tsukuba and vintage images.

Computation time results involving the single W×H×D
buffer are depicted in Fig. 13. At the lowest resolution

of 384×288 pixels, the proposed implementation on

the GTX 670 achieves 3.4ms for D= 10, 8.756ms for

D= 32 and 53.07ms for D= 200. In mid-range resolu-

tions such as 1120×1120 computation time ranges from

30.6ms (D=10) to 81.28ms (D=32) and up to 498.4ms

(D= 200). Computation time displays a linear depen-

dency to both the input resolution as well as the number

of disparities; in 1800×1500 images, the same GPU re-

quires 67.16 (D= 10) up to 1119.9ms (D= 200). The

GTX 550Ti performs approximately 1.66x-2x slower

in all cases. Note that the increased data caching re-

quirements of the algorithm favor the GTX 960 by 1.4x

on average compared to the GTX 670 as the former

18 Georgios Georgis et al.

Table 5: Frame Rate of Disparity on GPU.

GPU
Relative

Method FPS
GPU Power1

GTX 960 1 This work 225
GTX 960 1 [12] (Box filter) 807
GTX 680 0.966 [15] 90
GTX 580 0.789 [14] 62
GTX 480 0.693 [55] 24

features a larger 24KB unified cache, and of course a

larger shared memory per Streaming Multiprocessor.

Compared to the displayed results, our dual cube model

attains a speedup of approximately 1.09x in all GPUs.

Figure 13 also displays the computation time of [12],

a method similar to the method proposed by this paper

as it computes both depth maps, performs window-based

matching using a separable box filter and achieves sub-

pixel accuracy. For a fair comparison, we compiled [12]
on the GPUs tested, modifying the window to aggregate

13×13 samples. Our results show that [12] is up to

2.9x faster on 1120×1120 or larger input and up to
3.9x on 384×288 input - an expected result associated

with the separable properties of the authors’ employed

filter and the simple running sum instead of our integer

multiplication. The proposed implementation achieves a

performance of 38.48 fps considering inputs of 1390×1110

(D = 10) while it surpasses 423 fps for 384×288 images

at the same level of disparity.

Table 5 displays the achieved performance of the

proposed Disparity method as executed on the GTX

960 compared to GPU implementations of similar algo-

rithms in the literature. All methods involve window-

based aggregation, while [15,55] combine spatial with

temporal-based processing. Also, all methods use input
images of 320×240 pixels with D = 32. For sake of

comparison, we also report a relative measure of the

performance of the four distinct GPUs of Table 5. The

relative GPU performance was measured with a com-

mon benchmark using the the median values of the

TV-L1 Optical Flow results reported on-line in [56] and

the GTX 960 as baseline. (We acknowledge here that

this ratio does not suggest an absolute indication of the

relative GPU performance, as the listed GPUs represent

multiple architectural generations).

6.2 FPGA Implementation

To accelerate the Disparity algorithm on FPGA we

develop an architecture with pipelining on pixel basis,

parallel arithmetic calculations and, most importantly,

1 Estimated according to the ratings in https://compubench.

com/ based on the TV-L1 Optical Flow benchmark perfor-
mance.

twofold partitioning of the DSI cube to achieve on-

chip memory minimization. Specifically, we exploit the

fact that detecting the minimum metric value over the

D candidates is accomplished via a winner-takes-all

procedure and that the images are rectified. The former

allows us to proceed iteratively in computing each of

the D layers of the DSI cube and updating only those

metric values that are better than the currently detected

minimum. Thus, we only store the W×H global minima

instead of the entire DSI cube (effectively, one layer

instead of D). Rectification allows us to divide the image
in s horizontal stripes of size W × H/s and process

them independently, one after the other. Notice that

successive stripes must overlap by M/2− 1 = 3 rows to

allow the M ×M aggregation mask to slide seamlessly

between stripes. The above twofold partitioning of the

DSI cube leads to storing only W ×H/s values instead

of D×W ×H, i.e., to memory optimization by 4 orders

of magnitude.

Following the design approach described in the pre-

vious section, we develop a pipeline that reads one pixel

per cycle from each image in a raster-scan order to ul-

timately produce one similarity metric per cycle and

construct any i-th layer of the DSI cube, 0 < i < D

(also in raster scan order). The pipeline proceeds in i

successive iterations, one for each DSI layer. At each

iteration, we start reading the pixels of the left image

at position x = 0 and the pixels of the right image at

x = −i to create a virtual displacement by i pixels. As

described for the convolution components in the previ-

ous section, we sustain a throughput of 1 metric/cycle

by fully parallelizing the 7x7 Gauss mask multiplication

and developing a 7x7-to-1 pipelined adder tree. This

parallel arithmetic circuitry is preceded by a 1-to-7x7

serial-to-parallel buffer, which inputs sequentially the

differences of the left and right image pixels. The met-

ric values are forwarded from the adder tree to a map

updating component, which stores only the minimum

metric value per pixel and compares it to the newly com-

puted value for any possible update. Additionally, to

support the 3-tap interpolation, the updating component

stores the previous of the minimum value (temporarily

stored during the previous iteration) and performs on-

the-fly interpolation when the third tap/value arrives

(during the next iteration). Therefore, we double the

storage requirements (effectively, we store two layers

of the DSI) to perform on-the-fly interpolation. The

left-based disparity results are stored on-chip and the

pipeline resources are reused to compute the right-based

map via D new iterations. At a final step, we perform a

left-right consistency check of the two maps to output

the final results. Having completed the disparity map of

a W ×H/s stripe, we continue with the next stripe by

https://compubench.com/
https://compubench.com/

Title Suppressed Due to Excessive Length 19

reusing the HW resources until the entire image is pro-

cessed. More details regarding the proposed architecture

can be found in [51].

The aforementioned Disparity module was realized

using parametric VHDL on a Xilinx Virtex xc6vlx240t-

2 FPGA device. For image size 1120×1120, D = 200

disparity levels, and stripe size 1120×28, we get a HW

cost of 998 slices (3%), 2978 LUTs (2%), 3116 registers

(1%), 0 DSPs, and 101 RAMB36 (24%). If we enlarge

the aggregation mask from 7×7 to 13×13, the HW

cost will increase to 2690 slices (8,492 LUTs and 8,640
registers) showing that the most expensive component

is the parallel arithmetic circuit performing aggrega-

tion (depending on mask size, aggregation consumes

60%-85% of the utilized logic resources). Achieving up

to 344 MHz clock frequency, a single Disparity module

will process the entire 1120×1120 image pair in 1.87

sec (time is almost independent of the mask size due

to the applied full mask parallelization). If we further

parallelize the architecture at image level, i.e., employ

multiple Disparity modules to process multiple stripes

concurrently (as already described in the previous sec-

tion for L-SEABI), we can decrease the execution time

down to 0.54 sec, with approximately 8.8 Watts, for

f = 4 modules on xc6vlx240t-2. Compared to other sim-

ilar designs in the literature, the proposed single-module

architecture proves to be cost-efficient, i.e., it consumes

20x fewer LUTs and 0 DSPs and 1/3 RAMBs compared

to [22] (which however examines only 64 disparity levels

in only 4 ms), as well as 24x fewer LUTs and 0 DSPs

instead of 625 DSPS compared to [23] (which however

can process 1080p images at 30 fps).

7 CPU, GPU and FPGA Comparison

In this section, we will comparatively evaluate the per-

formance of the proposed acceleration implementations,

taking into account the output quality, the power enve-

lope and the cost of the underlying platform. To that

end, we will compare performance on the aforemen-

tioned GPU and FPGA devices to a common reference

point: the performance as measured on general purpose

multi-core x86 64 CPUs. In all of our experiments, we

upsample each LR image by a factor f =2 in both di-
mensions in order to obtain output images, which have

the same size as the ground truth. We will first com-

pare the output image quality and then the acceleration

performance.

L-SEABI Quality Results. As presented in sections

4.2.1, 4.2.2 and 5.1, the accelerated implementations

of SIL-SEABI include both arithmetic (i.e., Gaussian

filtering coefficients) and algorithmic approximations,

Table 6: Quality performance of the SIL-SEABI imple-

mentations on CPU, GPU and FPGA platforms.

SIL-SEABI Implementations Quality

Platform: CPU GPU FPGA
output size (Ref.) (Opt.) 8 str. 16 str. 29 str.

M
S

S
IM

QCIF 0.9086 0.9032 0.9085 0.9084 0.9074
CIF 0.8743 0.8701 0.8740 0.8744 0.8740
SD1 0.9679 0.9681 0.9703 0.9702 0.9704
720p 0.9567 0.9568 0.9593 0.9592 0.9592
1080p 0.9784 0.9784 0.9798 0.9797 0.9797
2160p 0.9879 0.9871 0.9879 0.9879 0.9879
avg 0.9456 0.9440 0.9467 0.9467 0.9464

B
R

IS
Q

U
E

QCIF 43.5880 41.5805 42.5290 40.9607 40.4722
CIF 36.1080 35.9498 36.4587 36.4763 36.8599
SD1 44.4549 41.8728 44.0211 44.2512 44.0111
720p 43.5580 41.7760 43.3747 43.4144 43.4126
1080p 42.0595 41.6913 42.0178 42.0280 42.0207
2160p 57.9444 55.9248 56.8053 56.9504 57.0885
avg 44.6188 43.1269 44.2011 44.0135 43.9775

such as the coarse-grain averaging of HD output samples

(GPU implementation), or the stripe-based total vari-

ation computation (FPGA implementation). To assess

the impact of these approximations, we compare the im-

age output quality of the accelerated implementations to

that of the CPU-based implementation used as reference

(same as in Table 1). Results (Table 6) reveal an MSSIM

and BRISQUE quality that is similar to that of the ref-

erence for both the GPU-based and the FPGA-based

implementations. As expected, increasing the number of

stripes in the FPGA implementation does incur a slight

quality degradation, which though remains negligible

even when processing QCIF resolution images using 29

horizontal stripes.

L-SEABI Acceleration Results: CPU analysis
To assess the proposed multicore CPU execution, we

employ a fully vectorized SIL-SEABI model which ex-

ploits the implicit multi-threading of MATLAB func-

tions. Moreover, we consider an implementation based

on single program multiple data (spmd) statements in

which we explicitly define the number of workers to

be equal to the CPU cores. In this model we partition

the image based on the number of workers and em-

ploy the labSend, labReceive functions of MATLAB for

message passing during computations. We implement

SIL-SEABI on the Atom 330 dual-core, the Core i5-

3470 quad-core and the FX-8120 octa-core processors.

In the spmd cases, we measure computation time up to

and including the image reassembling step.

To provide a relative graphical overview among plat-

forms, computation time results per output resolution

are plotted in Fig. 14 for all the CPU, GPU and FPGA

devices tested. Additionally, to summarize the measure-

ments in a more accurate manner, Table 7 shows the

20 Georgios Georgis et al.

Table 7: Acceleration performance of the SIL-SEABI

implementations on CPU, GPU and FPGA platforms.

SIL-SEABI Implementations Speedup

Platform
Output Resolution (f = 2)

QCIF CIF SD1 720p 1080p 2160p avg

i5-3470 1 1 1 1 1 1 1

FX-8120 1.26 1.15 0.90 0.73 0.55 0.49 0.85
GTX550Ti 78.54 98.95 69.70 108.79 94.68 90.66 90.22
GTX670 86.04 106.5 133.2 206.3 216.4 285.8 172.4
GTX960 70.58 93.01 156.1 184.6 194.9 238.2 156.2

V5-30-1(1) 1283 440.8 215.1 153.9 115.1 99.5 384.6
V5-110-1(4) 2517 1065 591.2 435.2 338.6 304.8 875.3
V5-330-1(8) 3281 1558 948.7 714.9 576.2 542.7 1270
V6-75-1(3) 2530 1027 553.3 404.5 311.5 277.5 850.6

V6-240-2(11) 4191 2101 1347 1029 848.1 814.6 1722
V6-550-2(18) 4589 2485 1733 1358 1167 1181 2086
A7-100-1(3) 2161 877.0 472.6 345.5 266.1 237.0 726.5
V7-485-2(16) 4905 2610 1783 1389 1181 1179 2174
V7-2K-2(29) 5039 2905 2191 1764 1588 1717 2534
U-035-2(12) 6160 3132 2037 1564 1297 1256 2574

achieved speedup per platform against the fastest CPU-

based implementation.

As expected, the lowest performance - approximately

10sec for upsampling to UHD - is achieved by the Atom
330, which features 1MB of L2 cache and it does not

support out-of-order or speculative execution. The quad

core i5-3470 achieves sub-second performance in almost

all cases and hence, it is used as the baseline for speedup

comparisons. When outputting to SD1 or higher reso-

lutions, the i5-3470 computes the result earlier than
the octa-core FX-8120 mainly due to the latter’s in-

creased memory latency. Notice that on a different level

of comparison the spmd message-passing modification in-

creases MATLAB’s implicit multithreading performance

by 1.09x and up to 1.28x when upsampling to 720p or

higher-resolutions on the i5-3470 (and by up to 1.38x

for 2160p output on the other processors); in lower res-

olutions the communication overhead is much higher

than the actual time spent for arithmetic computations

and it would be thus preferable to rely on MATLAB’s

implicit multithreading in such cases. When we apply

upsampling to input images of 6750×6750 pixels, com-

putation time increases almost linearly, i.e., the spmd

FX-8120 model completes in 21.39 sec.

L-SEABI Acceleration Results: GPU Analysis.
When evaluating GPU acceleration against the fastest

CPU results (i.e., the i5-3470 baseline in Tab. 7), we

measure a minimum speedup of 69.7x on the mid-end

GTX 550Ti for 720×576 output. The high-end GTX

670 attains a speedup of up to 285.8x as it requires

2.89 ms on average when upsampling to 2160p. Due to

memory restrictions, a further increase of the input size

will limit the number of GPU devices, which are capable

176
×14

4

352
×28

8

720
×57

6

128
0×7

20

192
0×1

088

384
0×2

160

10−5

10−4

10−3

10−2

10−1

100

101

CPUs

GPUs

FPGAs

Output Resolution (upsampling factor f=2)

C
om

p
u
ta
ti
on

T
im

e
(s
ec
)

Atom 330 Atom 330 (spmd) i5-3470 i5-3470 (spmd)

FX-8120 FX-8120 (spmd) GTX550Ti GTX670

GTX960 V5-30-1(1) V5-110-1(4) V5-330-1(8)

V6-75-1(3) V6-240-2(11) V6-550-2(18) A7-100-1(3)

V7-485-2(16) V7-2000-2(29) U-035-2(12)

Fig. 14: Overview of SIL-SEABI ’s performance per plat-

form and output resolution: Computation Time required

to upsample each input image by f = 2.

of such intensive processing: for instance, the GTX 960

requires 347.55 ms to upsample a 6750×6750 image by

2.

L-SEABI Acceleration Results: FPGA Analysis.
To facilitate our discussion of the results of the Ta-

ble 7 and Fig. 14, we denote a single engine fitted on

the xc5vlx30t-1 FPGA as V5-30-1 (1), 11 engines on

the xc6vlx240t-2 as V6-240-2 (11), 16 engines on the

xc7vx485t-2 as V7-485-2 (16), 12 engines on the xcku035-

2 as U-035-2 (12) and so on. As shown in Table 7 and

Fig. 14, the achieved speedup on a FPGA is significantly

higher than the aforementioned devices, especially for

88×72 input where the ratio of memory to arithmetic

operations is high: even a single engine on the xc5vlx30t-

1 can upsample a 88×72 image to 176×144 in 0.026

ms, i.e. a speedup of 1283x (Table 7). When upsampling

to 1080p or larger images, the low-end Virtex 5 single-

engine SIL-SEABI implementation performs close to

the GTX 550Ti, as they also do the 3-engine xc7a100t-

1, xc6vlx75t-1 and the 4-engine xc5vlx110t-1 FPGAs

against the higher-end GPUs i.e., when upsampling to

2160p. The implementation of 12 parallel engines on the

xcku035-2 provides the highest performance for 176×144

output while the 29 engines of the xc7v2000t-2 achieve

the highest speedup when upsampling to 2160p from

1080p, i.e., 6160x and 1716x respectively as Table 7

displays. Note that a significant increase of the input

size to 6750×6750 pixels restricts both the range of

suitable devices and the degree of FPGA parallelism, as

Title Suppressed Due to Excessive Length 21

a single engine now requires 252 RAMBs. Moreover, the

performance gap between GPUs and FPGAs narrows

- even though the latter still maintain their advantage;

the xc6vlx240t-2, now supporting up to 3 engines, pro-

duces a 13500×13500 output in up to 80.35 ms. Higher

end devices can reach real-time performance such as the

xc7vx485t-2, which, when configured with 8 engines can

achieve 33 fps (28.9 ms using 2016 RAMB modules).

Notice that this performance translates to real-time

processing of 182 Mpixel images, i.e., over 2 times the

resolution of upcoming 11K (11520×6480) monitors.
Overall, the general purpose processors reach an ab-

solute upsampling performance which ranges between

2.72 µs/pixel on the dual-core Atom 330 and 0.4 µs/pixel

on the higher-end CPUs. GPUs provide two orders of

magnitude higher performance (0.0048 and up to 0.0038

µs/pixel) while on FPGAs the modular design of the

architecture combined with a high degree of parallelism

can accelerate the execution even further than GPUs

(i.e, by another order of magnitude at 0.12 ns/pixel on

the 7-2000-2).

Disparity Results: Validation of the Proposed
Acceleration Techniques. Regarding the acceleration

of the presented here Disparity algorithm, the minimum

GPU speedup against CPU-based execution (GTX 960
against the i5-3470) for D = 200 can rise up to 50.33x

in 1800×1500 images and is 45.5x in 1120×1120 input for

which the xc6vlx240t-2 can accelerate CPUs by 28.8x

when employing 4 parallel modules.

Platform Comparison: Power vs Performance.
To enhance the thoroughness of our evaluation, we also

perform a joint power-performance assessment by mea-

suring the power consumed by each platform when ex-

ecuting the SIL-SEABI algorithm. Regarding CPUs

and GPUs, we measured the power consumption for

iterative execution (i.e. maximum 106 loops, until fluc-

tuation became negligible) by using a power meter at an

ambient temperature of 25 degrees Celsius and averaged

results over all image content. Regarding FPGAs, power

consumption was estimated at the same ambient tem-

perature using the Xilinx Power Estimator (XPE) tool.

The results are plotted in Fig. 15 juxtaposed against

the time required to upsample the input from 1080p

to 2160p. Figure 15 also presents a rough clustering of

the measured performances, which clearly shows the

gap between CPUs, GPUs and FPGAs using shaded

areas (brown for CPUs, gray for GPUs and light red for

FPGAs).

Among the examined CPUs, the Atom 330 has a

power envelope similar to that of the FPGAs: it con-

sumes approximately 3 W when idle and its total con-

sumption ranges between 5.1 W (QCIF) up to 6.5 W

10−3

10−1

101 100
101

102

102

103

104

CPUs

GPUs

FPGAs

Computation Time (sec)
Power (W)

C
o
st

(U
S
D
)

SIL-SEABI - Time, Power Consumption and Cost (1080p → 2160p)

Atom 330 i5-3470 FX-8120 GTX550Ti

GTX670 GTX960 V5-30-1 (1) V5-110-1 (4)

V5-330-1 (8) V6-75-1 (3) V6-240-2 (11) V6-550-2 (18)

A7-100-1 (3) V7-485-2 (16) V7-2000-2 (29) U-035-2 (12)

10−2

100 101
102

(sec) (W)

Disparity
(1120×1120)

Fig. 15: Time vs Power while performing Super-

Resolution (SIL-SEABI) and Stereo Correspondence
(Disparity). The figure includes various devices with

their respective cost of ownership (USD) and distinctive

aliases (notation explained in text).

(UHD). On the other hand, it requires at least three

orders of magnitude more computation time, thus result-

ing in a performance of 0.091 Msamples/W. Between the

other two processors, the octa-core FX-8120 consumes

almost two times the power of the quad-core i5-3470 :

the former requires up to 97.5 W in 1080p to UHD up-

sampling, compared to the latter which peaks at 50.78

W. Their respective performance is estimated at 0.042

and 0.112 Msamples/W.

GPUs feature a similar power envelope, ranging from

67 W (GTX 960) up to 76 W (GTX 670), yet at two

orders of magnitude less time. At 21.66 Msamples/W,

the GTX 960 is the most power efficient followed by

the GTX 670 at 20.69 and the GTX 550Ti at 8.32

Msamples/W.

As expected, FPGAs prove to be the most power

efficient among all the devices tested. Notice that even

though their computation time is directly comparable

to that of GPUs, they consume at least an order of

magnitude less power. Notice also (left side of Fig. 14)

that there is an increased performance gap between the

two platforms for small images, which can be attributed

to the low GPU occupancy resulting in idle cores. Ad-

ditionally, the plots tend to converge (right side of Fig.

14 and Table 7) as the significantly increased memory

requirements of large image inputs push the limits of

FPGA Block RAM resources, while GPUs on the other

22 Georgios Georgis et al.

Table 8: Energy evaluation of the SIL-SEABI imple-

mentations on CPU, GPU and FPGA platforms.

SIL-SEABI Implementations Energy (nJoules/sample)

Platform
Output Resolution (f = 2)

QCIF CIF SD1 720p 1080p 2160p avg

Atom 330 38065 16679 11503 8021 8410 7660 15056
i5-3470 59899 20104 10013 7393 5696 5069 18029

FX-8120 97206 35224 22074 19490 19680 14456 34689
GTX550Ti 784.1 206.6 167.6 80.11 78.06 80.88 232.9
GTX670 865.1 245.2 104.2 53.12 38.18 37.94 223.9
GTX960 652.5 167.9 51.71 32.88 26.17 28.92 160.03

V5-30-1(1) 0.927 0.899 0.890 0.888 0.885 0.882 0.895
V5-110-1(4) 1.624 1.279 1.113 1.079 1.033 0.988 1.186
V5-330-1(8) 3.097 2.174 1.724 1.633 1.509 1.389 1.921
V6-75-1(3) 1.601 1.315 1.179 1.151 1.113 1.076 1.239

V6-240-2(11) 2.530 1.683 1.268 1.184 1.070 0.959 1.449
V6-550-2(18) 3.119 1.920 1.330 1.211 1.050 0.893 1.587
A7-100-1(3) 0.639 0.525 0.471 0.459 0.444 0.429 0.495
V7-485-2(16) 1.530 0.958 0.677 0.621 0.544 0.469 0.799
V7-2K-2(29) 2.957 1.709 1.095 0.970 0.803 0.640 1.362
U-035-2(12) 1.379 0.904 0.671 0.624 0.560 0.498 0.773

hand can have ample memory space (e.g., 4GB on the

GTX 960). Regarding the joint power-performance as-

sessment, low-end FPGAs are the most prominent: the

3-engine xc7a100t-1 achieves the highest performance

of 2060.4 Msamples/W, followed by the 7-485-2 (16)

at 1460.37 Msamples/W and the xcku-035-2 (12) at

1453.67 Msamples/W. Our disparity assessment veri-

fies the above results as presented on the inset plot of

Fig. 15 for 1120×1120 input; the GTX 960 consumes

approximately 80 W thus reaching a performance of

9.17 MDEs/W (millions of disparity estimations per

Watt) and while the xc6vlx240t-2 is approximately 1.6x

slower, it only consumes 8.8 W which translates to a

performance of 51.8 MDEs/W. Contrastingly, the corre-

sponding performance of the FX-8120 is 0.11 MDEs/W.

From the energy perspective, aggregating the power

and performance results in Table 8 illustrates the dis-

tinction between platforms in an unambiguous manner.

When considering the Joules required to generate each

output sample, there is a two orders of magnitude dif-

ference between CPUs and GPUs and between GPUs

and FPGAs. Notice also that fluctuation recedes as the

image size increases, resulting in a more deterministic

behavior and thus less wasted energy. Moreover, energy

efficiency tends to increase on the newer generation de-

vices (i.e., i5-3470, GTX 960 and the 7-series FPGAs).

Platform Comparison: Development Cost. Fig-

ure 15 also plots (z-axis) the average cost in USD of

each integrated circuit (IC) for 1000-unit quantities at

the time of writing of this manuscript2. Notice that

FPGAs generally have the highest cost of ownership:

though for the low-power A7-100-1 it can be less than

20
08
20
11
20
12
20
11
20
12
20
15
20
08
20
11
20
13
20
14

10−4

10−3

10−2

10−1

100

101

CPUs

GPUs

FPGAs

45nm

22nm

32nm

40nm

28nm

28nm

65nm

40nm

28nm

20nm

Year of Introduction

J
oi
n
t
In
d
ex

(M
S
am

p
le
s/
(W

·U
S
D
))

SIL-SEABI - Time, Power and Cost (1080p → 2160p)

Atom 330 i5-3470 FX-8120 GTX550Ti

GTX670 GTX960 V5-30-1(1) V5-110-1(4)

V5-330-1(8) V6-75-1(3) V6-240-2(11) V6-550-2(18)

A7-100-1(3) V7-485-2(16) V7-2000-2(29) U-035-2(12)

Fig. 16: Combining SIL-SEABI ’s performance and cost

on various platforms.

$140, in mid-level ICs such as the V5-110-1 and V6-240-

2 it rises to approximately $2300, while the high-end

V6-550-2 and V7-2000-2 cost $6206 and $23838 respec-

tively. Taking into account the ownership cost allows us

to obtain a more comprehensive view. For instance, com-

pared to the GTX 670 the 7-485-2 (16) demonstrates an

increased power efficiency and an increased ownership

cost by approximately the same factor, which leads to

an estimation of a similar combined performance-power-

cost index, i.e., 0.2 Msamples/(W·USD). The highest

combined performance-power-cost index is achieved by
low-power FPGA implementations such as the 7-100-1

(3) and 5-30-1 (1), at 14.7 and 2.7 Msamples/(W·USD)

respectively.

Gathering all the results in the joint assessment plot

of Fig. 16 allows us to observe that all platforms tend to

increase their combined index as transistor size shrinks.

This performance increase can be attributed to the avail-

ability of more transistors at the same power envelope

and at a lower production cost. GPU ICs feature a com-

bined index which is more than two orders of magnitude

higher than that of general purpose processors. FPGAs

are able to maintain their performance advantage over
all platforms even when the cost of ownership is con-

sidered. On the other hand, high-end FPGA solutions

require a much steeper premium than the additional

performance they’re offering compared to their mid-end

counterparts. Notice that GPUs tend to offer the same

2 As recovered on-line mainly using the https://octopart.

com search engine (April 2016).

https://octopart.com
https://octopart.com

Title Suppressed Due to Excessive Length 23

performance with the FPGAs ranging from low to mid-

end and to approach the combined index of mid-end

FPGA devices. At the same time, low power FPGAs

increase both their available resources and performance

while lowering their cost of ownership (Table 4 and Fig.

16).

The total design and development time is also dis-

tinct for each platform; assuming development starts

from square one, the GPU implementations per algo-

rithm were completed in approximately one person-

month including optimizations, while FPGA implemen-
tations require approximately a triple effort. Based on

our assessment of the examined algorithms and their

implementation, high-end FPGAs can be an order of

magnitude faster than GPUs. When jointly evaluating

performance and power consumption, small-scale FPGA

devices can be up to two orders of magnitude more

power-efficient than current high-end GPUs. The same

analogy holds between the latter and multi-core gen-

eral purpose CPUs. Finally, when we additionally factor

the IC cost into our assessment, the results disclose

that small-scale FPGAs and GPUs constitute the better

choice.

8 Conclusion

The current paper presented accelerating techniques

for super-resolution and image processes. Aiming at the

improvement of their performance with respect to the ex-

ecution time, this work has based on the low complexity

results of the L-SEABI method and it introduced paral-

lelization techniques and their consequent optimizations

for application on GPUs and FPGAs.

The proposed GPU acceleration techniques proved

to constitute a powerful methodology for a wide range

of GPU architecture generations, including the latest.

Applied on multiple abstraction levels, spanning from

the design phase to the implementation API, they were

designed to exploit the GPU architectural features and

they are able to combine increased throughput, instruction-

level parallelism, with decreased latency and divergence.

Compared to the conventional real-time performance of

30 frames/sec, the proposed GPU techniques accelerate

the reconstruction of Ultra-High Definition content to

109 fps on mid-range and early generation devices and

345 fps on the currently available higher-end GPUs.

The proposed parameterizable and highly scalable

L-SEABI FPGA architecture was evaluated for a vari-

ety of parallelization factors as well as FPGA devices.

Optimizing of the pipelining at both pixel and task-level

led the proposed architecture to perform four (4x) times

faster than the conventional real time requirement on

earlier generation and low-end Virtex 5 devices and at

most sixty-nine (69x) times faster than real-time on the

powerful Virtex 2000t.

Furthermore, this work presented the results of the

comparative evaluation of the performance of SIL-SEABI

among CPU, GPU and FPGA implementations with re-

spect to the power dissipation of each platform. Thereby

it provided a graphical representation of the achieved

performance per Watt showing an overview of the rela-

tive power efficiency per platform.

Finally, the current paper consolidated the results

of the SR study by applying the proposed acceleration
strategy to a Disparity algorithm for computing a depth

map based on metric aggregations with non-separable

filters, left-right consistency checks and sub-pixel ac-

curacy estimations. For this problem it introduced a

GPU implementation aiming at assessing bottlenecks

through kernel profiling and an FPGA architecture tar-

geting memory requirements reduction. The proposed

GPU disparity implementation achieved an accelera-

tion of at least 14x over the fastest CPU (i5-3470)

on the mid-range GTX 550 Ti for 1120×1120 input

and 200 disparities, while the proposed FPGA architec-

ture showed an acceleration of 29x over the same CPU.

The power-performance results of Disparity verified the

comparative evaluation of the platforms based on the

L-SEABI algorithm.

References

1. Jianchao Yang and Huang Thomas. Digital Imaging and
Computer Vision. CRC Press, Sep 2010. 0.

2. Radu Timofte, Vincent De Smet, and Luc Van Gool.
Anchored neighborhood regression for fast example-based
super-resolution. In International Conference on Computer

Vision (ICCV 2013), December 2013.
3. Chao Dong, ChenChange Loy, Kaiming He, and Xiaoou

Tang. Learning a deep convolutional network for image
super-resolution. In David Fleet, Tomas Pajdla, Bernt
Schiele, and Tinne Tuytelaars, editors, Computer Vision
ECCV 2014, volume 8692 of Lecture Notes in Computer

Science, pages 184–199. Springer International Publishing,
2014.

4. C. Dong, C. Loy, K. He, and X. Tang. Image super-
resolution using deep convolutional networks. IEEE

Transactions on Pattern Analysis and Machine Intelligence,
38(2):295–307, Feb 2016.

5. Radu Timofte, Vincent De Smet, and Luc Van Gool. A+:
Adjusted anchored neighborhood regression for fast super-
resolution. In Daniel Cremers, Ian Reid, Hideo Saito,
and Ming-Hsuan Yang, editors, Computer Vision – ACCV

2014, volume 9006 of Lecture Notes in Computer Science,
pages 111–126. Springer International Publishing, 2015.

6. G. Georgis, G. Lentaris, and D. Reisis. Reduced com-
plexity superresolution for low-bitrate video compression.
IEEE Transactions on Circuits and Systems for Video Tech-
nology, 26(2):332–345, Feb 2016.

7. J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable
Parallel Programming with CUDA. ACM Queue Magazine,
6(2):40–53, April 2008.

24 Georgios Georgis et al.

8. Gilad Freedman and Raanan Fattal. Image and video
upscaling from local self-examples. ACM Trans. Graph.,
30(2):12:1–12:11, April 2011.

9. Yu Zhu, Yanning Zhang, and Alan L. Yuille. Single image
super-resolution using deformable patches. In Computer

Vision and Pattern Recognition (CVPR), 2014 IEEE Con-

ference on, pages 2917–2924, June 2014.
10. Khrizevsky Alex. CUDA Convolutional Neural Networks,

May 2015.
11. nVidia. NVIDIA CUDA Fast Fourier Transform library

(cuFFT), May 2015.
12. David Gallup, Jan-Michael Frahm, and Joe Stam. Cuda

stereo. In nVidia GPU Technology Conference 2009,
September 2009.

13. Qingxiong Yang. Hardware-efficient bilateral filtering
for stereo matching. Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on, 36(5):1026–1032, May 2014.

14. J. Kowalczuk, E.T. Psota, and L.C. Perez. Real-time
stereo matching on cuda using an iterative refinement
method for adaptive support-weight correspondences. Cir-
cuits and Systems for Video Technology, IEEE Transactions

on, 23(1):94–104, Jan 2013.
15. J. Kowalczuk, E.T. Psota, and L.C. Perez. Real-time

temporal stereo matching using iterative adaptive support
weights. In Electro/Information Technology (EIT), 2013

IEEE International Conference on, pages 1–6, May 2013.
16. O. Bowen and C. Bouganis. Real-time image super res-

olution using an fpga. In Field Programmable Logic and

Applications, 2008. FPL 2008. International Conference on,
pages 89–94, Sept 2008.

17. Maria E. Angelopoulou, Christos-Savvas Bouganis, Peter
Y. K. Cheung, and George A. Constantinides. Robust
real-time super-resolution on fpga and an application to
video enhancement. ACM Trans. Reconfigurable Technol.

Syst., 2(4):22–29, September 2009.
18. Yuki Sanada, Takanori Ohira, Satoshi Chikuda, Masaki

Igarashi, Masayuki Ikebe, Tetsuya Asai, and Masato Mo-
tomura. Fpga implementation of single-image super-
resolution based on frame-bufferless box filtering. Journal

of Signal Processing, 17(4):111–114, 2013.
19. Joel Pérez, Eduardo Magdaleno, Fernando Pérez, Manuel

Rodŕıguez, David Hernández, and Jaime Corrales. Super-
resolution in plenoptic cameras using fpgas. Sensors,
14(5):8669–8685, 2014.

20. Hiroyuki Okuhata, R Imai, Masanao Ise, Roberto Y
Omaki, Hajime Nakamura, Satoshi Hara, and I Shi-
rakawa. Implementation of dynamic-range enhancement
and super-resolution algorithms for medical image pro-
cessing. In Consumer Electronics (ICCE), 2014 IEEE In-

ternational Conference on, pages 181–184. IEEE, 2014.
21. Pierre Greisen, Simon Heinzle, Markus Gross, and An-

dreasP Burg. An fpga-based processing pipeline for high-
definition stereo video. EURASIP Journal on Image and
Video Processing, 2011(1), 2011.

22. Seunghun Jin, Junguk Cho, Xuan Dai Pham, Kyoung Mu
Lee, S-K Park, Munsang Kim, and Jae Wook Jeon. Fpga
design and implementation of a real-time stereo vision
system. Circuits and Systems for Video Technology, IEEE

Transactions on, 20(1):15–26, 2010.
23. Michael Werner, Benno Stabernack, and Christian

Riechert. Hardware implementation of a full hd real-
time disparity estimation algorithm. Consumer Electron-
ics, IEEE Transactions on, 60(1):66–73, 2014.

24. Shuai Che, Jie Li, J.W. Sheaffer, K. Skadron, and J. Lach.
Accelerating compute-intensive applications with gpus
and fpgas. In Application Specific Processors, 2008. SASP

2008. Symposium on, pages 101–107, June 2008.

25. Depeng Yang, Junqing Sun, J Lee, Getao Liang, David D
Jenkins, Gregory D Peterson, and Husheng Li. Perfor-
mance comparison of cholesky decomposition on gpus and
fpgas. In Symposium on Application Accelerators in High

Performance Computing, 2010.
26. D.H. Jones, A. Powell, C. Bouganis, and P.Y.K. Che-

ung. Gpu versus fpga for high productivity computing.
In Field Programmable Logic and Applications (FPL), 2010

International Conference on, pages 119–124, Aug 2010.
27. R. Kalarot and J. Morris. Comparison of fpga and gpu

implementations of real-time stereo vision. In Computer

Vision and Pattern Recognition Workshops (CVPRW), 2010

IEEE Computer Society Conference on, pages 9–15, June
2010.

28. ThiusiusRajeeth Savarimuthu, Anders Kjr-Nielsen, and
AndersStengaard Srensen. Real-time medical video pro-
cessing, enabled by hardware accelerated correlations.
Journal of Real-Time Image Processing, 6(3):187–197, 2011.

29. Marcin Pietron, Maciej Wielgosz, Dominik Zurek, Ernest
Jamro, and Kazimierz Wiatr. Comparison of gpu and
fpga implementation of svm algorithm for fast image seg-
mentation. In Architecture of Computing Systems ARCS
2013, volume 7767 of Lecture Notes in Computer Science,
pages 292–302. Springer Berlin Heidelberg, 2013.

30. Tomislav Matic, Ivan Aleksi, and Z̆eljko Hocenski. Cpu,
gpu and fpga implementations of mald: Ceramic tile sur-
face defects detection algorithm. Automatika, 55(1), 2014.

31. S.T. Gurumani, H. Cholakkal, Yun Liang, K. Rupnow, and
Deming Chen. High-level synthesis of multiple dependent
cuda kernels on fpga. In Design Automation Conference

(ASP-DAC), 2013 18th Asia and South Pacific, pages 305–
312, Jan 2013.

32. Jianchao Yang, J. Wright, T.S. Huang, and Yi Ma. Image
super-resolution via sparse representation. Image Process-
ing, IEEE Transactions on, 19(11):2861–2873, 2010.

33. Weisheng Dong, D. Zhang, Guangming Shi, and Xiaolin
Wu. Image deblurring and super-resolution by adap-
tive sparse domain selection and adaptive regularization.
Image Processing, IEEE Transactions on, 20(7):1838–1857,
2011.

34. S. Villena, M. Vega, R. Molina, and A.K. Katsaggelos.
Bayesian super-resolution image reconstruction using an
l1 prior. In Image and Signal Processing and Analysis, 2009.
ISPA 2009. Proceedings of 6th International Symposium on,
pages 152–157, 2009.

35. Weisheng Dong, D. Zhang, Guangming Shi, and Xiaolin
Wu. Nonlocal back-projection for adaptive image en-
largement. In Image Processing (ICIP), 2009 16th IEEE

International Conference on, pages 349–352, 2009.
36. Weisheng Dong, Lei Zhang, R. Lukac, and Guangming

Shi. Sparse representation based image interpolation with
nonlocal autoregressive modeling. Image Processing, IEEE
Transactions on, 22(4):1382–1394, April 2013.

37. Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simon-
celli. Image quality assessment: from error visibility to
structural similarity. Image Processing, IEEE Transactions
on, 13(4):600–612, 2004.

38. A Mittal, AK. Moorthy, and AC. Bovik. No-reference
image quality assessment in the spatial domain. Image

Processing, IEEE Transactions on, 21(12):4695–4708, Dec
2012.

39. J. Levon. Oprofile 1.0, a statistical profiler for Linux
systems., March 2015.

40. nVidia. Parallel Thread Execution ISA, March 2015.
41. Jason Sanders and Edward Kandrot. CUDA by Exam-

ple: An Introduction to General-Purpose GPU Programming.
Addison-Wesley Professional, 1st edition, 2010.

Title Suppressed Due to Excessive Length 25

42. Chang Xu, S.R. Kirk, and S. Jenkins. Tiling for perfor-
mance tuning on different models of gpus. In Informa-

tion Science and Engineering (ISISE), 2009 Second Interna-
tional Symposium on, pages 500–504, Dec 2009.

43. M. Harris. Optimizing Parallel Reduction in CUDA,
March 2007.

44. A. Eklund and P. Dufort. GPU-Pro 5: Advanced Rendering

Techniques - Non-Separable 2D, 3D and 4D filtering with
CUDA, chapter 5. CRC Press, first edition, 2014.

45. V. Volkov. Better Performance at Lower Occupancy,
September 2010.

46. V. Podlozhnyuk. Image Convolution with CUDA, July
2012.

47. nVidia. CUDA C Programming Guide, March 2015.
48. NVIDIA’s Next Generation CUDA Compute Architecture:

Kepler GK110, August 2012.
49. Tomasz Szydzik, Gustavo M Callico, and Antonio Nunez.

Efficient fpga implementation of a high-quality super-
resolution algorithm with real-time performance. Con-

sumer Electronics, IEEE Transactions on, 57(2):664–672,
2011.

50. Richard Szeliski. Computer Vision: Algorithms and Appli-

cations. Springer, ISBN: 978-1-84882-935-0, 2010.
51. George Lentaris, Dionysios Diamantopoulos, Kostas

Siozios, Dimitrios Soudris, and M Avilés Rodrigálvarez.
Hardware implementation of stereo correspondence algo-
rithm for the exomars mission. In Field Programmable
Logic and Applications (FPL), 2012 22nd International

Conference on, pages 667–670. IEEE, 2012.
52. D. Scharstein and Chris Pal. Learning conditional random

fields for stereo. In Computer Vision and Pattern Recog-
nition, 2007. CVPR ’07. IEEE Conference on, pages 1–8,
June 2007.

53. Daniel Scharstein and Richard Szeliski. A taxonomy and
evaluation of dense two-frame stereo correspondence al-
gorithms. International Journal of Computer Vision, 47(1-
3):7–42, 2002.

54. D. Scharstein and R. Szeliski. High-accuracy stereo depth
maps using structured light. In Computer Vision and Pat-

tern Recognition, 2003. Proceedings. 2003 IEEE Computer

Society Conference on, volume 1, pages I–195–I–202 vol.1,
June 2003.

55. Asmaa Hosni, Christoph Rhemann, Michael Bleyer, and
Margrit Gelautz. Temporally consistent disparity and
optical flow via efficient spatio-temporal filtering. In Yo-
Sung Ho, editor, Advances in Image and Video Technology,
volume 7087 of Lecture Notes in Computer Science, pages
165–177. Springer Berlin Heidelberg, 2012.

56. Kishonti Ltd. Compubench, a professional OpenCL and
Renderscript benchmark, March 2015.

A Appendix

In this section, we provide the results of our entire

Super-Resolution enhancement evaluation, in tabular

(Table 9) and image form (Figure 17). As Table 9 shows,

when we employ our algorithms prior to the technique

presented in [35] the MSSIM metric recedes, particularly

on 352×288 resolutions. For this particular resolution the

BRISQUE results show that L-SEAI can have superior

ANR enhancing performance than both L-SEABI and

SIL-SEABI.

Apart from the Cameraman image, Figure 17 subjec-

tively assesses the output of [36] and [32] when process-

ing the 176×144 Carphone and 256×256 Butterfly and

Starfish images. According to the results, the aliasing

reduction effects of SIL-SEABI when it is applied before

NARM are also apparent in the Carphone and Butter-

fly images (17i, 17j). Finally, notice that SIL-SEABI

improves the contrast of all images upsampled by [32]

(Fig. 17q, 17r, 17s and 17t).

26 Georgios Georgis et al.

Table 9: Per resolution objective comparison of state-of-the-art SR algorithms (scaling factor f=2) when using

L-SEABI (a), SIL-SEABI (b) and L-SEAI (c) as their initial reconstruction phase against the parameters proposed

by their authors. Lower ∆BRISQUE indicates higher quality.

↓Metric Algorithm → NLIBP ANR Yang et al. NARM DPSR ASDS-AR-NL
output size↓ Initialization [35] [2] [32] [36] [9] [33]

∆
M

S
S

IM
(
e
n
h
a
n
c
e
d
−
o
r
ig

in
a
l)

QCIF
(a) -0.13793 -0.02854 -0.02495 0.00337 0.01224 0.00242
(b) -0.14526 -0.03719 -0.03268 0.00321 0.01208 0.00223
(c) -0.04064 -0.00560 -0.00984 0.00469 0.00918 0.00178

CIF
(a) -0.13655 -0.02631 -0.01849 0.00220 0.01481 -0.00021
(b) -0.13367 -0.03043 -0.02266 0.00208 0.01444 -0.00011
(c) -0.03763 -0.00423 -0.01087 0.00235 0.01121 0.00138

SD1
(a) -0.06806 -0.01726 -0.01665 0.00116 0.00225 0.00160
(b) -0.06947 -0.01901 -0.01864 0.00119 0.00214 0.00155
(c) -0.02102 -0.00902 -0.01039 0.00113 0.00164 0.00150

720p
(a) -0.07074 -0.01943 -0.01730 0.00116 0.00276 0.00171
(b) -0.07234 -0.02162 -0.01914 0.00113 0.00267 0.00169
(c) -0.01511 -0.01082 -0.01407 0.00114 0.00206 0.00164

1080p
(a) -0.05187 -0.01130 -0.01427 0.00128 0.00087 0.00168
(b) -0.05229 -0.01223 -0.01473 0.00126 0.00083 0.00168
(c) -0.02102 -0.00564 -0.00973 0.00125 0.00064 0.00165

2160p
(a) -0.02498 -0.05470 -0.01093 -0.00005 0.00037 -
(b) -0.02561 -0.00592 -0.01102 -0.00004 0.00035 -
(c) -0.00753 -0.00282 -0.00866 -0.00004 0.00029 -

avg
(a) -0.08169 -0.01805 -0.01710 0.00152 0.00555 -
(b) -0.08311 -0.02106 -0.01981 0.00147 0.00542 -

(c) -0.02379 -0.00636 -0.00106 0.00175 0.00417 -

∆
B

R
IS

Q
U

E
(
e
n
h
a
n
c
e
d
−
o
r
ig

in
a
l)

QCIF
(a) -7.41320 -3.68780 -3.47380 -0.64420 -7.93090 -0.61830
(b) -2.62820 -0.57520 -3.28160 -2.81310 -7.48240 -0.55620
(c) -6.34600 0.55840 2.81730 -2.56050 -7.89660 -0.12090

CIF
(a) 7.80928 -2.73474 -5.99424 -0.42284 -3.12196 -0.17576
(b) 9.06760 -2.09434 -5.41352 -0.15354 -2.88236 -0.03572
(c) 0.66116 -10.2587 -4.09130 -0.36940 -3.10202 0.08386

SD1
(a) -11.7947 -4.39134 -4.0984 -0.15325 -0.068348 -0.02612
(b) -6.3031 -2.77888 -2.26036 -0.27947 -0.73072 -0.02005
(c) -6.7559 -0.06337 1.44172 -0.16850 -0.86090 -0.03902

720p
(a) -8.77396 -2.94443 -6.10462 0.05638 -0.93106 -0.0634
(b) -5.48932 -2.42523 -4.26859 -0.38838 -0.83522 -0.07618
(c) -5.10736 -0.39096 -0.25632 0.09672 -0.79050 -0.03506

1080p
(a) -7.86562 -7.99265 -10.8402 1.36240 -1.83855 -0.01110
(b) -4.88077 -7.44972 -9.51325 0.48452 -1.76727 0.00032
(c) -3.97212 -2.69070 -3.31287 0.70232 -1.56985 -0.00012

2160p
(a) -14.1632 0.58664 -5.16501 -0.40221 -0.40991 -
(b) -11.7626 1.43108 -3.87191 -0.48665 -0.33370 -
(c) -7.66023 1.50892 -1.82637 -0.17654 -0.28128 -

avg
(a) -7.03358 -3.52738 -5.94605 -0.03395 -2.48597 -

(b) -3.66607 -2.31538 -4.76820 -0.60610 -2.33862 -
(c) -4.86342 -1.88940 -0.87130 -0.41265 -2.41686 -

Title Suppressed Due to Excessive Length 27

(a) Carphone: ground truth (b) Butterfly: ground truth (c) Cameraman: ground truth (d) Starfish: ground truth

(e) normal SR: [36]
MSSIM: 0.92782
BRISQUE: 39.7551

(f) normal SR: [36]
MSSIM: 0.925027
BRISQUE: 33.8404

(g) normal SR: [36]
MSSIM: 0.865780
BRISQUE: 39.3129

(h) normal SR: [36]
MSSIM: 0.914907
BRISQUE: 30.1323

(i) [36]+SIL-SEABI
MSSIM: 0.93103
BRISQUE: 39.1109

(j) [36]+SIL-SEABI
MSSIM: 0.926914
BRISQUE: 32.3599

(k) [36]+SIL-SEABI
MSSIM: 0.869826
BRISQUE: 38.4339

(l) [36]+SIL-SEABI
MSSIM: 0.915686
BRISQUE: 29.8780

(m) normal SR: [32]
MSSIM: 0.91694
BRISQUE: 31.6656

(n) normal SR: [32]
MSSIM: 0.909051
BRISQUE: 31.0606

(o) normal SR: [32]
MSSIM: 0.863308
BRISQUE: 37.0668

(p) normal SR: [32]
MSSIM: 0.904035
BRISQUE: 34.1451

(q) [32]+SIL-SEABI
MSSIM: 0.88426
BRISQUE: 28.3840

(r) [32]+SIL-SEABI
MSSIM: 0.860352
BRISQUE: 26.8966

(s) [32]+SIL-SEABI
MSSIM: 0.837666
BRISQUE: 33.3080

(t) [32]+SIL-SEABI
MSSIM: 0.879176
BRISQUE: 29.1027

Fig. 17: Subjective comparison of [36], [32]: normal execution and enhanced with SIL-SEABI (f = 2).

	Introduction
	Related Work
	The L-SEABI Algorithm as a standalone SR solution and State-of-the-Art enhancement
	Acceleration of L-SEABI on GPU
	Acceleration of L-SEABI on FPGA
	Application of the proposed acceleration techniques to Stereo Correspondence algorithms
	CPU, GPU and FPGA Comparison
	Conclusion
	Appendix

