Skip to main content
Log in

FPGA-based accurate star segmentation with moon interference

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

Star sensors, which are based on matching obtained star information to the star catalogue, are instruments widely used to determine a spacecraft’s attitude in space. Thus, a highly accurate extraction of real-time star information is a major issue in star sensor designs. In this study, a novel field programmable gate array (FPGA)-based accurate star segmentation algorithm is proposed to satisfy real-time requirements. Windows with a star or its parts are found using a maximum filtering based local gradient and local gradient threshold that is adaptively calculated using the local mean. An adaptive threshold, which is based on local mean and local median, can be used to determine whether the center pixel of the window is a pixel of a star. The algorithm can properly segment bright and dark stars, and completely eliminate moon interference. A precision of <0.09 pixels can be maintained in images at different Gaussian noise levels. A parallel and pipeline architecture also utilized in FPGA implementation, and the processing time is 22.22 ms for a 2048 × 2048 gray-level image.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Sezgin, M.: Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imaging 13(1), 146–168 (2004)

    Article  Google Scholar 

  2. Guo, R., Pandit, S.M.: Automatic threshold selection based on histogram modes and a discriminant criterion. Mach. Vis. Appl. 10(5–6), 331–338 (1998)

    Article  Google Scholar 

  3. Ramesh, N., Yoo, J.H., Sethi, I.K.: Thresholding based on histogram approximation. IEEE Proc. Vis. Image Signal Process. 142(5), 271–279 (1995)

    Article  Google Scholar 

  4. Kittler, J., Illingworth, J.: Minimum error thresholding. Pattern Recognit. 19(1), 41–47 (1986)

    Article  Google Scholar 

  5. Otsu, N.: A threshold selection method from gray-level histograms. Automatica 11(285–296), 23–27 (1975)

    Google Scholar 

  6. Li, C.H., Lee, C.K.: Minimum cross entropy thresholding. Pattern Recognit. 26(4), 617–625 (1993)

    Article  Google Scholar 

  7. Cheng, H.D., Chen, Y.H., Sun, Y.: A novel fuzzy entropy approach to image enhancement and thresholding. Signal Process. 75(3), 277–301 (1999)

    Article  MATH  Google Scholar 

  8. Zhou, F., Zhao, J., Ye, T., Chen, L.: Fast star centroid extraction algorithm with sub-pixel accuracy based on FPGA. J. Real Time Image Process. (2014). doi:10.1007/s11554-014-0408-z

    Google Scholar 

  9. Niblack, W.: An Introduction to Digital Image Processing. Strandberg Publishing Company, Copenhagen (1985)

    Google Scholar 

  10. Yan, F., Zhang, H., Kube, C.R.: A multistage adaptive thresholdingmethod. Pattern Recognit. Lett. 26(8), 1183–1191 (2005)

    Article  Google Scholar 

  11. Khurshid, K., Siddiqi, I., Faure, C., Vincent, N.: Comparison of Niblack inspired Binarization methods for ancient documents. In: IS&T/SPIE Electronic Imaging. International Society for Optics and Photonics: 72470U-72470U-9 (2009)

  12. Bernsen, J.: Dynamic thresholding of grey-level images. Int. Conf. Pattern Recognit. 2, 1251–1255 (1986)

    Google Scholar 

  13. White, J.M., Rohrer, G.D.: Image thresholding for optical character recognition and other applications requiring character image extraction. IBM J. Res. Dev. 27(4), 400–411 (1983)

    Article  Google Scholar 

  14. Blayvas, I., Bruckstein, A., Kimmel, R.: Efficient computation of adaptive threshold surfaces for image binarization. Pattern Recognit. 39(1), 89–101 (2006)

    Article  Google Scholar 

  15. Saha, B.N., Ray, N.: Image thresholding by variational minimax optimization. Pattern Recognit. 42(5), 843–856 (2009)

    Article  MATH  Google Scholar 

  16. Shi, J., Zhang, H.: Adaptive local threshold with shape information and its application to object segmentation. In: IEEE International Conference on Robotics and Biomimetics (ROBIO), 2009. IEEE, pp. 1123–1128. (2009)

  17. Jiang, X., Mojon, D.: Adaptive local thresholding by verification-based multithreshold probing with application to vessel detection in retinal images. IEEE Trans. Pattern Anal. Mach. Intell. 25(1), 131–137 (2003)

    Article  Google Scholar 

  18. Arbabmir, M.V., Mohammad, S.M., Sadegh, S., Farshad, S.: Improving night sky star image processing algorithm for star sensors. J. Opt. Soc. Am. A: 31(4), 794–801 (2014)

    Article  Google Scholar 

  19. Mao, X.N., Liang, W.S., Zheng, X.J.: A parallel computing architecture based image processing algorithm for star sensor. J. Astronaut. 32(3), 613–619 (2011) (in Chinese)

    Google Scholar 

  20. Jiang, J., Liu, C., Ling, S.: An FPGA implementation for real-time edge detection. J. Real-Time Image Process. doi:10.1007/s11554-015-0521-7 (2015)

    Google Scholar 

  21. Hamdaoui, F., Khalifa, A., Sakly, A., Mtibaa, A.: Real time implementation of medical images segmentation based on PSO. In: International Conference on Control, Decision and Information Technologies (CoDIT), 2013. IEEE, pp. 036–042 (2013)

  22. Gonzalez, R.C.: Digital Image Processing. Pearson Education India, New York (2009)

    Google Scholar 

  23. Hezel, S., Kugel, A., Männer, R., Gavrila, D.M.: FPGA-based template matching using distance transforms. In: Proceedings of the 10th Annual IEEE Symposium on Field-Programmable Custom Computing Machines, 2002. IEEE, pp. 89–97 (2002)

  24. Bailey, D.G.: Efficient implementation of greyscale morphological filters. In: International Conference on Field-Programmable Technology, pp. 421–424 (2010)

  25. Wei, Xingguo, Zhang, Guangjun, Jiang, Jie: Subdivided locating method of star image for star sensor. J. Beijing Univ. Aeronaut. Astronaut. 29(9), 812–815 (2004) (in Chinese)

    Google Scholar 

Download references

Acknowledgments

This research is supported by the National Natural Science Fund of China under Grant (No. 61222304) and grants from the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20121102110032). The authors are grateful for all the valuable suggestions received during the course of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, J., Chen, K. FPGA-based accurate star segmentation with moon interference. J Real-Time Image Proc 16, 1289–1299 (2019). https://doi.org/10.1007/s11554-016-0633-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-016-0633-8

Keywords

Navigation