Skip to main content
Log in

FPGA implementation of the principal component analysis algorithm for dimensionality reduction of hyperspectral images

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

Remotely sensed hyperspectral imaging is a very active research area, with numerous contributions in the recent scientific literature. The analysis of these images represents an extremely complex procedure from a computational point of view, mainly due to the high dimensionality of the data and the inherent complexity of the state-of-the-art algorithms for processing hyperspectral images. This computational cost represents a significant disadvantage in applications that require real-time response, such as fire tracing, prevention and monitoring of natural disasters, chemical spills, and other environmental pollution. Many of these algorithms consider, as one of their fundamental stages to fully process a hyperspectral image, a dimensionality reduction in order to remove noise and redundant information in the hyperspectral images under analysis. Therefore, it is possible to significantly reduce the size of the images, and hence, alleviate data storage requirements. However, this step is not exempt of computationally complex matrix operations, such as the computation of the eigenvalues and the eigenvectors of large and dense matrices. Hence, for the aforementioned applications in which prompt replies are mandatory, this dimensionality reduction must be considerably accelerated, typically through the utilization of high-performance computing platforms. For this purpose, reconfigurable hardware solutions such as field-programmable gate arrays have been consolidated during the last years as one of the standard choices for the fast processing of hyperspectral remotely sensed images due to their smaller size, weight and power consumption when compared with other high-performance computing systems. In this paper, we propose the implementation in reconfigurable hardware of the principal component analysis (PCA) algorithm to carry out the dimensionality reduction in hyperspectral images. Experimental results demonstrate that our hardware version of the PCA algorithm significantly outperforms a commercial software version, which makes our reconfigurable system appealing for onboard hyperspectral data processing. Furthermore, our implementation exhibits real-time performance with regard to the time that the targeted hyperspectral instrument takes to collect the image data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. http://www.xilinx.com/ise/embedded/edk_pstudio.htm.

  2. http://aviris.jpl.nasa.gov.

  3. http://speclab.cr.usgs.gov/spectral-lib.html.

  4. http://www.ittvis.com.

  5. Research Systems, ENVI Users Guide. Boulder, CO: Research Systems, Inc., 2001.

References

  1. Landgrebe, D.: Hyperspectral image data analysis. IEEE Signal Process. Mag. 19, 17–28 (2002)

    Article  Google Scholar 

  2. Chang, C.-I.: Hyperspectral Imaging: Techniques for Spectral Detection and Classification. Kluwer Academic, New York (2003)

    Book  Google Scholar 

  3. Li, J., Bruce, L.M.: Improving the accuracy of linear pixel unmixing via appropriate endmember dimensionality reduction. IEEE workshop on advances in techniques for analysis of remotely sensed data, 2003

  4. Du, Q., Younan, N.H.: Dimensionality Reduction and Linear Discriminant Analysis for Hyperspectral Image Classification. Lecture Notes in Computer Science. 5179, 392–399 (2008)

  5. Harsanyi, J.C., Chang, C.-I.: Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach. IEEE Trans. Geosci. Remote Sens. 32(4), 779–785 (1994)

    Article  Google Scholar 

  6. Farrell, M.D., Mersereau, R.M.: On the impact of PCA dimension reduction for hyperspectral detection of difficult targets. IEEE Geosci. Remote Sens. Lett. 2(2), 192–195 (2005)

    Article  Google Scholar 

  7. Du, Q., Fowler, J.E.: Hyperspectral image compression using JPEG2000 and principal component analysis. IEEE Geosci. Remote Sens. Lett. 4(2), 201–205 (2007)

    Article  Google Scholar 

  8. Rodarmel, C., Shan, J.: Principal component analysis for hyperspectral image classification. Surv. Land Inf. Syst. 62(2), 115–123 (2002)

    Google Scholar 

  9. Wu, Z., Li, Y., Plaza, A., Li, J., Xiao, F., Wei, Z.: Parallel and distributed dimensionality reduction of hyperspectral data on cloud computing architectures. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. (2016). doi:10.1109/JSTARS.2016.2542193 pp. 1–9

  10. Koonsanit, K., Jaruskulchai, C., Eiumnoh, A.: Band selection for dimension reduction in hyper spectral image using integrated information gain and principal components analysis technique. Int. J. Mach. Learn. Comput. 2(3), 48–51 (2012)

    Google Scholar 

  11. Jošth, R., Antikainen, J., Havel, J., Herout, A., Zemčík, P., Hauta-Kasari, M.: Real-time PCA calculation for spectral imaging (using SIMD and GP-GPU). J. Real-Time Image Proc. 7(2), 95–103 (2012)

    Article  Google Scholar 

  12. Antikainen, J., Hauta-Kasari, M., Jaaskelainen, T., Parkkinen, J.: Fast non-iterative PCA computation for spectral image analysis using GPU. Conference on colour in graphics, imaging, and vision, final program and proceedings, pp. 554–559(6), 2010

  13. Du, H., Qi, H.: An FPGA implementation of parallel ICA for dimensionality reduction in hyperspectral images. IEEE Int. Geosci. Remote Sens. Symp. 5, 3257–3260 (2004)

    Google Scholar 

  14. Lopez, S., Vladimirova, T., Gonzalez, C., Resano, J., Mozos, D., Plaza, A.: The promise of reconfigurable computing for hyperspectral imaging onboard systems: a review and trends. IEEE Proc. 101(3), 698–722 (2013)

    Article  Google Scholar 

  15. Bernabe, S., Lopez, S., Plaza, A., Sarmiento, R., Rodriguez, P.G.: FPGA design of an automatic target generation process for hyperspectral image analysis. IEEE Int. Conf. Parall. Distrib. Syst. (ICPADS) 2011, 1010–1015 (2011)

  16. Lopez, S., Horstrand, P., Callico, G.M., Lopez, J.F., Sarmiento, R.: A novel architecture for hyperspectral endmember extraction by means of the modified vertex component analysis (MVCA) algorithm. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 5(6), 1837–1848 (2012)

    Article  Google Scholar 

  17. Gonzalez, C., Mozos, D., Resano, J., Plaza, A.: FPGA implementation of the N-FINDR algorithm for remotely sensed hyperspectral image analysis. IEEE Trans. Geosci. Remote Sens. 50(2), 374–388 (2012)

    Article  Google Scholar 

  18. Gonzalez, C., Resano, J., Plaza, A., Mozos, D.: FPGA implementation of abundance estimation for spectral unmixing of hyperspectral data using the image space reconstruction algorithm. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 5(1), 248–261 (2012)

    Article  Google Scholar 

  19. Gonzalez, C., Resano, J., Mozos, D., Plaza, A., Valencia, D.: FPGA implementation of the pixel purity index algorithm for remotely sensed hyperspectral image analysis. EURASIP J. Adv. Signal Process. 2010(969806), 1–13 (2010)

    Google Scholar 

  20. Lee, C.A., Gasster, S.D., Plaza, A., Chang, C.-I., Huang, B.: Recent developments in high performance computing for remote sensing: a review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 4(3), 508–527 (2011)

    Article  Google Scholar 

  21. Gonzalez, C., Sanchez, S., Paz, A., Resano, J., Mozos, D., Plaza, A.: Use of FPGA or GPU-based architectures for remotely sensed hyperspectral image processing. Integr. VLSI J. 46(2), 89–103 (2013)

    Article  Google Scholar 

  22. Sterpone, L., Porrmann, M., Hagemeyer, J.: A novel fault tolerant and runtime reconfigurable platform for satellite payload processing. IEEE Trans. Comput. 62(8), 1508–1525 (2013)

    Article  MathSciNet  Google Scholar 

  23. Clemente, J.A., Gonzalez, C., Resano, J.J., Mozos, D.: A hardware implementation of a run-time scheduler for reconfigurable systems. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 19(7), 1263–1276 (2011)

    Article  Google Scholar 

  24. Green, R.O., Eastwood, M.L., Sarture, C.M., Chrien, T.G., Aronsson, M., Faust, J.A., Pavri, B.E., Chovit, C.J., Solis, M., Olah, M.R., Williams, O.: Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS). Remote Sens. Environ. 65(3), 227–248 (1988)

    Article  Google Scholar 

  25. Gonzalez, C., Lopez, S., Mozos, D., Sarmiento, R.: FPGA implementation of the HySime algorithm for the determination of the number of endmembers in hyperspectral data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8(6), 2870–2883 (2015)

    Article  Google Scholar 

  26. Gonzalez, C., Lopez, S., Mozos, D., Sarmiento, R.: A novel FPGA-based architecture for the estimation of the virtual dimensionality in remotely sensed hyperspectral images. J. Real-Time Image Process. (2015). doi:10.1007/s11554-014-0482-2

    Article  Google Scholar 

  27. Garcia, M., Ustin, S.L.: Detection of interannual vegetation responses to climatic variability using AVIRIS data in a coastal savanna in California. IEEE Trans. Geosci. Remote Sens. 39, 1480–1490 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the by the Spanish Ministry of Science and Innovation under references READAR (TIN2013-40968-P) and REBECCA (TEC2014-58036-C4-4-R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Gonzalez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandez, D., Gonzalez, C., Mozos, D. et al. FPGA implementation of the principal component analysis algorithm for dimensionality reduction of hyperspectral images. J Real-Time Image Proc 16, 1395–1406 (2019). https://doi.org/10.1007/s11554-016-0650-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-016-0650-7

Keywords

Navigation