Skip to main content

Advertisement

Log in

Energy-efficient image compression algorithm for high-frame rate multi-view wireless capsule endoscopy

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

The design, architecture and VLSI implementation of an image compression algorithm for high-frame rate, multi-view wireless endoscopy is presented. By operating directly on Bayer color filter array image the algorithm achieves both high overall energy efficiency and low implementation cost. It uses two-dimensional discrete cosine transform to decorrelate image values in each \(4\times 4\) block. Resulting coefficients are encoded by a new low-complexity yet efficient entropy encoder. An adaptive deblocking filter on the decoder side removes blocking effects and tiling artifacts on very flat image, which enhance the final image quality. The proposed compressor, including a 4 KB FIFO, a parallel to serial converter and a forward error correction encoder, is implemented in 180 nm CMOS process. It consumes 1.32 mW at 50 frames per second (fps) and only 0.68 mW at 25 fps at 3 MHz clock. Low silicon area 1.1 mm \(\times\) 1.1 mm, high energy efficiency (27 \(\upmu\)J/frame) and throughput offer excellent scalability to handle image processing tasks in new, emerging, multi-view, robotic capsules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Iddan, G., Meron, G., Glukhovsky, A., Swain, P.: Wireless capsule endoscopy. Nature 405, 417–418 (2000)

    Article  Google Scholar 

  2. Mustafa, B.F., Samaan, M., Langmead, L., Khasraw, M.: Small bowel video capsule endoscopy: an overview. Expert Rev. Gastroenterol. Hepatol. 7(4), 323–329 (2013)

    Article  Google Scholar 

  3. Goenka, M.K., Majumder, S., Goenka, U.: Capsule endoscopy: present status and future expectation. World J. Gastroenterol. 20, 10024–10037 (2014)

    Article  Google Scholar 

  4. De Falco, I., Tortora, G., Dario, P., Menciassi, A.: An integrated system for wireless capsule endoscopy in a liquid-distended stomach. IEEE Trans. Biomed. Eng. 61(3), 794–804 (2013)

    Article  Google Scholar 

  5. Keller, J., Fibbe, C., Volke, F., Gerber, J., Mosse, A.C., Reimann-Zawadzki, M., Rosien, U.: Inspection of the human stomach using remote-controlled capsule endoscopy: a feasibility study in healthy volunteers (with videos). Gastrointest. Endosc. 73(1), 22–28 (2011)

    Article  Google Scholar 

  6. Slawinski, P.R., Obstein, K.L., Valdastri, P.: Emerging issues and future developments in capsule endoscopy. Tech. Gastrointest. Endosc. 17, 40–46 (2015)

    Article  Google Scholar 

  7. Arezzo, A., Menciassi, A., Valdastri, P., Ciuti, G., Lucarini, G., Salerno, M., Morino, M.: Experimental assessment of a novel robotically-driven endoscopic capsule compared to traditional colonoscopy. Dig. Liver Dis. 45(8), 657–662 (2013)

    Article  Google Scholar 

  8. Moglia, A., Menciassi, A., Schurr, M.O., Dario, P.: Wireless capsule endoscopy: from diagnostic devices to multipurpose robotic systems. Biomed. Microdev. 9, 235–243 (2007)

    Article  Google Scholar 

  9. Koslowsky, B., Jacob, H., Eliakim, R., Adler, S.N.: PillCam ESO in esophageal studies: improved diagnostic yield of 14 frames per second (fps) compared with 4 fps. Endoscopy 38, 27–30 (2006)

    Article  Google Scholar 

  10. Valdastri, P., Simi, M., Webster III, R.J.: Advanced technologies for gastrointestinal endoscopy. Annu. Rev. Biomed. Eng. 14, 397–429 (2012)

    Article  Google Scholar 

  11. Xu, L.S., Meng, M.Q.H., Hu, C.: Effects of dielectric values of human body on specific absorption rate following 430, 800, and 1200 MHz RF exposure to ingestible wireless device. IEEE Trans. Inf. Technol. Biomed. 14(1), 52–59 (2010)

    Article  Google Scholar 

  12. Turgis, D., Puers, R.: Image compression in video radio transmission for capsule endoscopy. Sens. Actuators A: Phys. 123–124, 129–136 (2005)

    Article  Google Scholar 

  13. Lin, M.C., Dung, L.R., Weng, P.K.: An ultra-low-power image compressor for capsule endoscope. BioMed. Eng. OnLine 5(1), 14 (2006)

    Article  Google Scholar 

  14. Wahid, K., Ko, S.B., Teng, D.: Efficient hardware implementation of an image compressor for wireless capsule endoscopy applications. In: IEEE World Congress on Computational Intelligence, pp. 2761–2765. (2008)

  15. Dung, L.R., Wu, Y.Y., Lai, H.C., Weng, P.K.: A modified H. 264 Intra-frame video encoder for capsule endoscope. In: IEEE Biomedical Circuits and Systems Conference, 2008. BioCAS 2008, pp. 61-64. (2008)

  16. Chen, X., Zhang, X., Zhang, L., Li, X., Qi, N., Jiang, H., Wang, Z.: A wireless capsule endoscope system with low power controlling and processing ASIC. IEEE Trans. Biomed. Circuits Syst. 3(1), 11–22 (2009)

    Article  Google Scholar 

  17. Turcza, P., Duplaga, M.: Low power FPGA based image processing core for wireless capsule endoscopy. Sens. Actuators A: Phys. 172, 552–560 (2012)

    Article  Google Scholar 

  18. Khan, T.H., Wahid, K.A.: Subsample-based image compression for capsule endoscopy. J. Real-Time Image Proc. 8(1), 5–19 (2013)

    Article  Google Scholar 

  19. Turcza, P., Duplaga, M.: Hardware-efficient low-power image processing system for wireless capsule endoscopy. IEEE J. Biomed. Health Inf. 17(6), 1046–1056 (2013)

    Article  Google Scholar 

  20. Fante, K.A., Bhaumik, B., Chatterjee, S.: Design and implementation of computationally efficient image compressor for wireless capsule endoscopy. Circuits Syst. Signal Process. 34, 1–27 (2015)

    Article  Google Scholar 

  21. Berlekamp, E.R.: Bit-serial Reed- Solomon encoders. IEEE Trans. Inf. Theory IT 28(6), 869–874 (1982)

    Article  Google Scholar 

  22. Yuce, M.R., Dissanayake, T.: Easy-to-swallow wireless telemetry. IEEE Microw. Mag. 13(6), 90–101 (2012)

    Article  Google Scholar 

  23. Lee, S.Y., Ortega, A.: A novel approach of image compression in digital cameras with a Bayer color filter array. Proc. ICIP 3, 482–485 (2001)

    Google Scholar 

  24. Malvar, H.S., Hallapuro, A., Karczewicz, M., Kerofsky, L.: Low-complexity transform and quantization in H.264/AVC. IEEE Trans. Circuits Syst. Video Tech. 7, 598–603 (2003)

    Article  Google Scholar 

  25. Rice, R.F.: Some practical universal noiseless coding techniques, Tech. Rep. JPL-79-22, Jet Propulsion Laboratory, Pasadena, CA, (1979)

  26. Chen, S.L., Nie, J., Lin, T.L., Chung, R.L., Hsia, C.H., Liu, T.Y., Lin, S.Y., Wu, H.X.: VLSI implementation of an ultra-low-cost and low-power image compressor for wireless camera networks. J. Real-Time Image Proc. (2015). doi:10.1007/s11554-015-0553-z

    Article  Google Scholar 

  27. Merhav, N., Seroussi, G., Weinberger, M.J.: Optimal prefix codes for sources with two-sided geometric distributions. IEEE Trans. Inf. Theory 46, 121–135 (2000)

    Article  MathSciNet  Google Scholar 

  28. Weinberger, M.J., Seroussi, G., Sapiro, G.: LOCO-I: A low complexity context-based lossless image compression algorithm. In: Proceedings of the 1996 Data Comp. Conference, pp. 140–149. (1996)

  29. List, P., Joch, A., Lainema, J., Bjontegaard, G., Karczewicz, M.: Adaptive deblocking filter. IEEE Trans. Circuits Syst. Video Tech. 13(7), 614–619 (2003)

    Article  Google Scholar 

  30. Draft ITU-T Recommendation and Final Draft International Standard of Joint Video Specification (ITU-T Rec. H.264/ISO/IEC 14 496-10 AVC), (2003)

  31. Malvar, H.S., He, L.W., Cutler, R.: High-quality linear interpolation for demosaicing of bayer-patterned color images. Proc. ICASSP 3, 485–488 (2004)

    Google Scholar 

  32. Gastrolab. Available: http://www.gastrolab.net

  33. OmniVisoin OV7692 (Online). Available: http://www.ovt.com (2016)

  34. Dung, L.R., Wu, Y.Y.: A wireless narrowband imaging chip for capsule endoscope. IEEE Trans. Biomed. Circuits Syst. 4, 462–468 (2010)

    Article  Google Scholar 

  35. OmniVisoin OV6946 (2016) (Online). Available: http://www.ovt.com

  36. Turcza, P., Zielinski, T., Duplaga, M.: Hardware implementation aspects of new low complexity image coding algorithm for wireless capsule endoscopy. Springer, LNCS 5101, 476–485 (2008)

  37. FSA0M_A 0.18\(\mu\)m Standard Cell Library (Online). http://freelibrary.faraday-tech.com/

  38. FSA0A_C_SJ 0.18\(\mu\)m Synchronous Dual-Port Static Memory Compiler [Online]. http://freelibrary.faraday-tech.com/

  39. Perlman, M., Lee, J. J.: Reed-Solomon Encoders—Conventional vs. Berlekamp’s Architecture. Publication 82-71. Jet Propulsion Laboratory, Pasadena, CA, (1982)

Download references

Acknowledgements

This work was supported in part by the Ministry of Science and Higher Education of Poland under Grant AGH-11.11.120.774.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Turcza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turcza, P., Duplaga, M. Energy-efficient image compression algorithm for high-frame rate multi-view wireless capsule endoscopy. J Real-Time Image Proc 16, 1425–1437 (2019). https://doi.org/10.1007/s11554-016-0653-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-016-0653-4

Keywords

Navigation