Skip to main content

Advertisement

Log in

Fast CU size and prediction mode decision algorithm for HEVC based on direction variance

Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

As the latest video coding standard, High Efficiency Video Coding (HEVC) achieves high coding performance, up to 50% bit rate savings compared with the previous standard, H.264/Advanced Video Coding while maintaining the same output video quality. Intra-coding in the HEVC significantly improves the compression efficiency, due to the various kinds of coding unit (CU) sizes, and high density of angular prediction modes. However, the improvement of the coding performance is obtained at the expense of the extraordinary computation complexity, which obstructs the usefulness of HEVC encoder for real-time applications. This paper presents a novel intra-encoding algorithm for HEVC, which is composed of an efficient CU partitioning technique and a fast intra-mode decision method based on direction variance. We utilize a preprocessing method in which the texture complexity and direction energy distribution along a special direction are extracted from a macroblock. According to the texture complexity obtained, an early CU splitting termination is proposed to decide whether a CU should be decomposed into four lower-dimensions CUs or not. Furthermore, a subset of prediction modes in accordance with the dominant direction energy distribution is chosen for the further rough mode decision and rate–distortion optimization process. The simulation results indicate the algorithm based on image understanding achieves better trade-off between rate–distortion performance and complexity reduction than the previous algorithms. Compared with the reference software HM16.7, the proposed algorithm can save 57% coding time on average, with a negligible bit rate increase of 0.65%, and quality losses lower 0.08 dB, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wiegand, T., Ohm, J.R., Sullivan, G.J., et al.: Special section on the joint call for proposals on high efficiency video coding (HEVC) standardization. IEEE Trans. Circuits Syst. Video Technol. 20(12), 1661–1666 (2010)

    Article  Google Scholar 

  2. Ohm, J.R., Sullivan, G.J., Schwarz, H., Tan, T.K., Wiegand, T.: Comparison of the coding efficiency of video coding standards: including high efficiency video coding (HEVC). IEEE Trans. Circuits Syst. Video Technol. 22(12), 1669–1684 (2012)

    Article  Google Scholar 

  3. Wiegand, T., Sullivan, G.J., Bjontegaard, G., et al.: Overview of the H.264/AVC video coding standard. IEEE Trans. Circuits Syst. Video Technol. 13(7), 560–576 (2003)

    Article  Google Scholar 

  4. Sullivan, G.J., Ohm, J., Han, W.J., et al.: Overview of the high efficiency video coding (HEVC) standard. IEEE Trans. Circuits Syst. Video Technol. 22(12), 1649–1668 (2012)

    Article  Google Scholar 

  5. Karczewicz, M., Chen, P., Joshi, R.L., et al.: A hybrid video coder based on extended macroblock sizes, improved interpolation, and flexible motion representation. IEEE Trans. Circuits Syst. Video Technol. 20(12), 1698–1708 (2010)

    Article  Google Scholar 

  6. Kim, I.K., Min, J., Lee, T., et al.: Block partitioning structure in the HEVC standard. IEEE Trans. Circuits Syst. Video Technol. 22(12), 1697–1706 (2012)

    Article  Google Scholar 

  7. Lainema, J., Bossen, F., Han, W.J., et al.: Intra coding of the HEVC standard. IEEE Trans. Circuits Syst. Video Technol. 22(12), 1792–1801 (2012)

    Article  Google Scholar 

  8. Sullivan, G.J., Wiegand, T.: Rate–distortion optimization for video compression. Signal Process. Mag. IEEE 15(6), 74–90 (1998)

    Article  Google Scholar 

  9. Zhao, L., Zhang, L., Ma, S., et al.: Fast mode decision algorithm for intra prediction in HEVC. Video Eng. 15(7), 813–822 (2011)

    Google Scholar 

  10. Vanne, J., Viitanen, M., Hamalainen, T.D., et al.: Comparative rate–distortion-complexity analysis of HEVC and AVC video codecs. IEEE Trans. Circuits Syst. Video Technol. 22(12), 1885–1898 (2012)

    Article  Google Scholar 

  11. Lim, K., Lee, J., Kim, S., et al.: Fast PU skip and split termination algorithm for HEVC intra prediction. IEEE Trans. Circuits Syst. Video Technol. 25(8), 1335–1346 (2014)

    Google Scholar 

  12. Shen, L., Zhang, Z., Liu, Z.: Effective CU size decision for HEVC intra coding. IEEE Trans. Image Process. A Publ. IEEE Signal Process. Soc. 23(10), 4232–4241 (2014)

    Article  Google Scholar 

  13. Goswami, K., Lee, J.H., Jang, K.S., et al.: Entropy difference-based early skip detection technique for high-efficiency video coding. J Real-Time Image Process. 12(2), 237–245 (2016)

    Article  Google Scholar 

  14. Min, B., Cheung, R.C.C.: A fast CU size decision algorithm for the HEVC intra encoder. IEEE Trans. Circuits Syst. Video Technol. 25(5), 892–896 (2015)

    Article  Google Scholar 

  15. Yao, Y., Li, X., Lu, Y.: Fast intra mode decision algorithm for HEVC based on dominant edge assent distribution. Multimed. Tools Appl. 75(4), 1–19 (2016)

    Article  Google Scholar 

  16. Tariq, J., Kwong, S., Yuan, H.: HEVC intra mode selection based on rate distortion (RD) cost and sum of absolute difference (SAD) ☆. J. Vis. Commun. Image Represent. 35, 112–119 (2015)

    Article  Google Scholar 

  17. Ruiz, D., Fernández-Escribano, G., Martínez, J.L., et al.: Fast intra mode decision algorithm based on texture orientation detection in HEVC. Signal Process. Image Commun. 44, 12–28 (2016)

    Article  Google Scholar 

  18. Zhang, H., Ma, Z.: Member, IEEE. fast intra mode decision for high efficiency video coding (HEVC). IEEE Trans. Circuits Syst. Video Technol. 24(4), 660–668 (2014)

    Article  Google Scholar 

  19. Sang, J.P.: CU encoding depth prediction, early CU splitting termination and fast mode decision for fast HEVC intra-coding. Signal Process. Image Commun. 42, 79–89 (2016)

    Article  Google Scholar 

  20. Song, Y., Zeng, Y., Li, X., et al.: Fast CU size decision and mode decision algorithm for intra prediction in HEVC. Multimed. Tools Appl. 76(2), 1–17 (2016)

    Google Scholar 

  21. Zhao, L., Fan, X., Ma, S., et al.: Fast intra-encoding algorithm for high efficiency video coding. Signal Process. Image Commun. 29(9), 935–944 (2014)

    Article  Google Scholar 

  22. Goswami, K., Lee, J.H., Kim, B.G.: Fast algorithm for the high efficiency video coding (HEVC) encoder using texture analysis. Inf. Sci. Int. J. 364, 72–90 (2016)

    Google Scholar 

  23. Ding, H., Huang, X., Zhang, Q.: The fast intra CU size decision algorithm using gray value range in HEVC. Opt. Int. J. Light Electron Opt. 127(18), 7155–7161 (2016)

    Article  Google Scholar 

  24. Velisavljevic, V., Beferulllozano, B., Vetterli, M., et al.: Directionlets: anisotropic multidirectional representation with separable filtering. IEEE Trans. Image Process. 15(7), 1916–1933 (2006)

    Article  Google Scholar 

  25. Jayachandra, D., Makur, A.: Directional variance: a measure to find the directionality in a given image segment. In: Proceedings of 2010 IEEE International Symposium on Circuits and Systems (ISCAS), Paris, FRANCE, pp. 1551–1554 (2010)

  26. Öztekin, A., Erçelebi, E.: An early split and skip algorithm for fast intra CU selection in HEVC. J. Real Time Image Process. 12(2), 1–11 (2016)

    Article  Google Scholar 

  27. da Silva T.L., Agostini L.V., da Silva Cruz L.A.: Fast HEVC intra prediction mode decision based on edge direction information. In: Proceedings in European Signal Processing Conference (EUSIPCO), pp. 1214–1218 (2012)

  28. Ramezanpour, M., Zargari, F.: Fast CU size and prediction mode decision method for HEVC encoder based on spatial features. SIViP 10(7), 1–8 (2016)

    Article  Google Scholar 

  29. Bossen, F.: Common test conditions and software reference configurations. In: Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11 Document JCTVC-L1100, 12th Meeting, Geneva, CH (2013)

  30. Bjontegaard, G.: Calculation of average PSNR difference between RD-curves. In: SG16/Q6 VCEG,13. Meeting, Austin, TX, Apr. 2001, Doc. VCEG-M33 (2001)

  31. Correa, G., Assuncao, P.A., Volcan Agostini, L., et al.: Fast HEVC encoding decisions using data mining. IEEE Trans. Circuits Syst. Video Technol. 25(4), 660–673 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Science Foundation of China under Grant No. 61201037, and the author would like to thank the reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Chen, X., Xu, Y. et al. Fast CU size and prediction mode decision algorithm for HEVC based on direction variance. J Real-Time Image Proc 16, 1731–1744 (2019). https://doi.org/10.1007/s11554-017-0682-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-017-0682-7

Keywords

Navigation