Skip to main content

Advertisement

Log in

Self adaptable high throughput reconfigurable bilateral filter architectures for real-time image de-noising

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

A bilateral filter is a local, non-iterative and non-linear technique which aids in removing the noise while preserving edges and details. This work proposes novel highly parallel-pipelined low complex bilateral filter architectures to achieve high throughput, high efficiency, self adaptability and reconfigurability in a real-time noisy environment. The design implements true bilateral filter by adaptively varying the filter parameters to achieve error tolerance less than \(4\%\). The proposed architecture can denoise up to 4K UHD (2160 p @ 53 fps) video stream at real-time. The design improves the throughput by \(88\%\), reduces resource utilization and latency by 30 and \(60\%\) respectively than the state of the art architectures. The proposed fixed and floating point implementation achieves a power efficiency of 318 GOPS/W and 37 GFLOPS/W respectively. The dynamic reconfigurability of the design allows to switch from high efficiency to high throughput mode in less than 4.2 ms. The evaluation of a real time denoising system on FullHD (1080 p) video stream is performed on Virtex-7 FPGA. A comparison with Virtex-5 FPGA implementation shows the robust performance of the architecture across different FPGA families.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Smith, S.M., Brady, J.M.: Susana new approach to low level image processing. Int. J. Comput. Vis. 23(1), 45–78 (1997)

    Article  Google Scholar 

  2. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Computer Vision, 1998. Sixth International Conference on. IEEE, pp. 839–846 (1998)

  3. Durand, F., Dorsey, J.: Fast bilateral filtering for the display of high-dynamic-range images. In: ACM Transactions on Graphics (TOG), vol. 21, no. 3. ACM, pp. 257–266 (2002)

  4. Pham, T.Q., Van Vliet, L.J.: Separable bilateral filtering for fast video preprocessing. In: Multimedia and Expo, 2005. ICME 2005. IEEE International Conference on. IEEE, p. 4 (2005)

  5. Chen, J., Paris, S., Durand, F.: Real-time edge-aware image processing with the bilateral grid. In: ACM Transactions on Graphics (TOG), vol. 26, no. 3. ACM, p. 103 (2007)

  6. Porikli, F.: Constant time o (1) bilateral filtering. In: Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on. IEEE, pp. 1–8 (2008)

  7. Chaudhury, K.N., Sage, D., Unser, M.: Fast bilateral filtering using trigonometric range kernels. IEEE Trans. Image Process. 20(12), 3376–3382 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Yang, Q.: Recursive approximation of the bilateral filter. IEEE Trans. Image Process. 24(6), 1919–1927 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Charoensak, C., Sattar, F.: FPGA design of a real-time implementation of dynamic range compression for improving television picture. In: Information, Communications & Signal Processing, 2007 6th International Conference on. IEEE, pp. 1–5 (2007)

  10. Han, S.-K., Jeong, M.-H., Woo, S., You, B.-J.: Architecture and implementation of real-time stereo vision with bilateral background subtraction. In: Advanced Intelligent Computing Theories and Applications. With Aspects of Theoretical and Methodological Issues. Springer, pp. 906–912 (2007)

  11. Vinh, T.Q., Park, J.H., Kim, Y.-C., Hong, S.H.: FPGA implementation of real-time edge-preserving filter for video noise reduction. In: Computer and Electrical Engineering, 2008, ICCEE 2008. International Conference on. IEEE, pp. 611–614 (2008)

  12. Gabiger-Rose, A., Kube, M., Schmitt, P., Weigel, R., Rose, R.: Image denoising using bilateral filter with noise-adaptive parameter tuning. In: IECON 2011-37th Annual Conference on IEEE Industrial Electronics Society. IEEE, pp. 4515–4520 (2011)

  13. Zhang, B., Allebach, J.P.: Adaptive bilateral filter for sharpness enhancement and noise removal. IEEE Trans. Image Process. 17(5), 664–678 (2008)

    Article  MathSciNet  Google Scholar 

  14. Gabiger, A., Kube, M., Weigel, R.: A synchronous fpga design of a bilateral filter for image processing. In: Industrial Electronics, 2009. IECON’09. 35th Annual Conference of IEEE. IEEE, pp. 1990–1995 (2009)

  15. Hannig, F., Schmid, M., Teich, J., Hornegger, H.: A deeply pipelined and parallel architecture for denoising medical images. In: Field-Programmable Technology (FPT), 2010 International Conference on. IEEE, pp. 485–490 (2010)

  16. Tseng, Y.-C., Hsu, P.-H., Chang, T.-S.: A 124 mpixels/s vlsi design for histogram-based joint bilateral filtering. IEEE Trans. Image Process. 20(11), 3231–3241 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Villalpando, C.Y., Morfopolous, A., Matthies, L., Goldberg, S.: FPGA implementation of stereo disparity with high throughput for mobility applications. In: Aerospace Conference, 2011 IEEE. IEEE, pp. 1–10 (2011)

  18. Pal, C., Chaudhury, K.N., Samanta, A., Chakrabarti, A., Ghosh, R.: Hardware software co-design of a fast bilateral filter in fPGA. In: 2013 Annual IEEE India Conference (INDICON). IEEE, pp. 1–6 (2013)

  19. Kutty, J.S.S., Boussaid, F., Amira, A.: A high speed configurable fpga architecture for bilateral filtering. In: Image Processing (ICIP), 2014 IEEE International Conference on. IEEE, pp. 1248–1252 (2014)

  20. Liu, C., Freeman, W.T., Szeliski, R., Kang, S.B.: Noise estimation from a single image. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1. IEEE, pp. 901–908 (2006)

  21. Bailey, D.G., Klaiber, M.J.: Efficient hardware calculation of running statistics. In: Image and Vision Computing New Zealand (IVCNZ), 2013 28th International Conference of. IEEE, pp. 196–201 (2013)

  22. Prabhu, G.R., Johnson, B., Rani, J.S.: FPGA based scalable fixed point qrd core using dynamic partial reconfiguration. In: VLSI Design (VLSID), 2015 28th International Conference on. IEEE, pp. 345–350 (2015)

  23. Prabhu, G.R., Johnson, B., Rani, J.S.: Scalable fixed point qrd core using dynamic partial reconfiguration. Int. J. Reconfig. Comput. 2014, 15 (2014)

    Google Scholar 

  24. Parhi, K.K.: VLSI Digital Signal Processing Systems: Design and Implementation. Wiley, Hoboken (2007)

    Google Scholar 

  25. Wu, C.-H., Chang, H.-H.: Superpixel-based image noise variance estimation with local statistical assessment. EURASIP J. Image Video Process. 2015(1), 1 (2015)

    Article  Google Scholar 

  26. Gabiger-Rose, A., Kube, M., Weigel, R., Rose, R.: An fpga-based fully synchronized design of a bilateral filter for real-time image denoising. IEEE Trans. Ind. Electron. 61(8), 4093–4104 (2014)

    Article  Google Scholar 

  27. Dutta, H., Hannig, F., Teich, J., Heigl, B., Hornegger, H.: A design methodology for hardware acceleration of adaptive filter algorithms in image processing. In: Application-Specific Systems, Architectures and Processors, 2006. ASAP’06. International Conference on. IEEE, pp. 331–340 (2006)

  28. Isa, M., Benkrid, K., Clayton, T.: Efficient architecture and scheduling technique for pairwise sequence alignment. ACM SIGARCH Comput. Archit. News 40(4), 26–31 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bibin Johnson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnson, B., Moncy, J.K. & Rani, J.S. Self adaptable high throughput reconfigurable bilateral filter architectures for real-time image de-noising. J Real-Time Image Proc 16, 1745–1764 (2019). https://doi.org/10.1007/s11554-017-0684-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-017-0684-5

Keywords

Navigation