Skip to main content
Log in

An efficient and compact row buffer architecture on FPGA for real-time neighbourhood image processing

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

This work presents a compact and efficient row buffer (RB) architecture on field-programmable gate array (FPGA). The design confines multiple RBs within the full capacity of Xilinx Block RAM (BRAM) in contrast to the conventional approach which partially utilizes a full BRAM per RB. The configuration of BRAM with different port aspect ratio and its data accessing via an efficient pattern generator circuitry allows the design to buffer pixelwise image data and retrieve multiple pixels per clock in a predefined pattern to achieve the functionality of multiple RBs. The design uses smallest BRAM18 primitive to be scaled in small steps for any larger kernel and image size for providing the best economical solution. The proposed architecture retains the bandwidth requirement to 1 pixel/clock at an ideal efficiency of 1 clock/pixel along with the saving of up to 87.5% BRAMs as compared to the conventional RBs and at the same time sustains high frame rates (\(1920\times 1080\) @ 217 fps) to support real-time image processing. Therefore, it is feasible to replace conventional high-cost RBs with our proposed RBs on latest FPGA devices especially for high performance yet area constraint neighbourhood image processing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Haidekker, M.: Advanced Biomedical Image Analysis. Wiley, New York (2011)

    MATH  Google Scholar 

  2. Wan Ahmad, W.S.H.M., Zaki, W.M.D., Ahmad Fauzi, M.F.: Lung segmentation on standard and mobile chest radiographs using oriented Gaussian derivatives filter. BioMed. Eng. 14(1), 1–26 (2015)

    Google Scholar 

  3. Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis, and Machine Vision. Cengage Learning, Boston (2014)

    Google Scholar 

  4. Yang, H., Zhang, J., Sun, J., Yu, L.: Review of advanced FPGA architectures and technologies. J. Electron. 31(5), 371–393 (2014)

    Google Scholar 

  5. Al Najjar, M., Ghantous, M., Bayoumi, M.: Video Surveillance for Sensor Platforms. Springer, Berlin (2014)

    Book  Google Scholar 

  6. Kazmi, M., Aziz, A., Akhtar, P., Ikram, N.: A low cost structurally optimized design for diverse filter types. PLoS ONE 11(11), e0166,056 (2016)

    Article  Google Scholar 

  7. Torres-Huitzil, C., Arias-Estrada, M.: Real-time image processing with a compact FPGA-based systolic architecture. Real-Time Imaging 10(3), 177–187 (2004)

    Article  Google Scholar 

  8. Vourvoulakis, J., Kalomiros, J., Lygouras, J.: Fully pipelined FPGA-based architecture for real-time SIFT extraction. Microprocess. Microsyst. 40, 53–73 (2016)

    Article  Google Scholar 

  9. Cooke, P., Fowers, J., Brown, G., Stitt, G.: A tradeoff analysis of FPGAs, GPUs, and multicores for sliding-window applications. ACM Trans. Reconfig. Technol. Syst. 8(1), 1–24 (2015). doi:10.1145/2659000

    Article  Google Scholar 

  10. Pauwels, K., Tomasi, M., Alonso, J.D., Ros, E., Van Hulle, M.M.: A comparison of FPGA and GPU for real-time phase-based optical flow, stereo, and local image features. IEEE Trans. Comput. 61(7), 999–1012 (2012)

    Article  MathSciNet  Google Scholar 

  11. Bailey, D.G.: Design for Embedded Image Processing on FPGAs. Wiley, New York (2011)

    Book  Google Scholar 

  12. Liu, Q., Constantinides, G.A., Masselos, K., Cheung, P.: Combining data reuse with data-level parallelization for FPGA-targeted hardware compilation: a geometric programming framework. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 28(3), 305–315 (2009)

    Article  Google Scholar 

  13. Bosi, B., Bois, G., Savaria, Y.: Reconfigurable pipelined 2-d convolvers for fast digital signal processing. IEEE Trans. Very Large Scale Integr. Syst. 7(3), 299–308 (1999)

    Article  Google Scholar 

  14. Cardells-Tormo, F., Molinet, P.L.: Area-efficient 2-D shift-variant convolvers for FPGA-based digital image processing. IEEE Trans. Circuits Syst. II Express Briefs 53(2), 105–109 (2006)

    Article  Google Scholar 

  15. Zhang, H., Xia, M., Hu, G.: A multiwindow partial buffering scheme for FPGA-based 2-D convolvers. IEEE Trans. Circuits Syst. II: Express Briefs 54(2), 200–204 (2007)

    Article  Google Scholar 

  16. Cao, T.P., Elton, D., Deng, G.: Fast buffering for FPGA implementation of vision-based object recognition systems. J. Real-Time Image Proc. 7(3), 173–183 (2012)

    Article  Google Scholar 

  17. Schmidt, M., Reichenbach, M., Loos, A., Fey, D.: A smart camera processing pipeline for image applications utilizing marching pixels. Signal Image Process. Int. J. 2(3), 137–156 (2011)

    Article  Google Scholar 

  18. Wiatr, K., Jamro, E.: Implementation image data convolutions operations in FPGA reconfigurable structures for real-time vision systems. In: International Conference on Information Technology: Coding and Computing, 2000. Proceedings. IEEE, pp. 152–157 (2000)

  19. Liang, X., Jean, J., Tomko, K.: Data buffering and allocation in mapping generalized template matching on reconfigurable systems. J. Supercomput. 19(1), 77–91 (2001)

    Article  Google Scholar 

  20. Moore, C.T., Devos, H., Stroobandt, D.: Optimizing the FPGA memory design for a sobel edge detector. In: 20th Annual Workshop on Circuits, Systems and Signal Processing (ProRISC 2009), STW Technology Foundation, pp. 496–499 (2009)

  21. (2013) 7 Series FPGAs Memory Resources, user guide, v1.10 ed. Tech. rep., Xilinx

  22. Holzer, M., Schumacher, F., Greiner, T., Rosenstiel, W.: Optimized hardware architecture of a smart camera with novel cyclic image line storage structures for morphological raster scan image processing. In: 2012 IEEE International Conference on Emerging Signal Processing Applications (ESPA). IEEE, pp. 83–86 (2012)

  23. Deserno, T.M.: Biomedical Image Processing. Springer, Berlin (2011)

    Book  Google Scholar 

  24. Tomasi, M., Vanegas, M., Barranco, F., Diaz, J., Ros, E.: High-performance optical-flow architecture based on a multi-scale, multi-orientation phase-based model. IEEE Trans. Circuits Syst. Video Technol. 20(12), 1797–1807 (2010)

    Article  Google Scholar 

  25. (2002) Virtex-E 1.8 V Field Programmable Gate Array v2.3. Tech. rep., Xilinx

  26. (2003) Spartan-II, FPGA Family: Complete Data Sheet v2.5. Tech. rep., Altera Corp

  27. (2012) Virtex 5 FPGA User Guide v5.4. Tech. rep., Xilinx

  28. (2012) XST User Guide for Virtex-6, Spartan-6, and 7 Series Device. Tech. rep., Xilinx

  29. (2015) Stratix V, Device Overview. Tech. rep., Altera Corp

  30. (2016) Virtex UltraScale FPGAs Data Sheet: DC and AC Switching Characteristics v1.7.1. Tech. rep., Xilinx

  31. Wakin, M.: Standard Test Images, University of Michigan. http://www.ece.rice.edu/wakin/images/ (2003)

  32. (2014) Artix 7 FPGA Data Sheet: DC and Switching Characteristics. Tech. rep., Xilinx

  33. (2013) ISE Design Suite 14: Release Notes, Installation and Licensing. Tech. rep., Xilinx

  34. Holzer, M., Schumacher, F., Flores, I., Greiner, T., Rosenstiel, W.: A real time video processing framework for hardware realization of neighborhood operations with FPGAs. In: 2011 21st International Conference Radioelektronika (RADIOELEKTRONIKA). IEEE, pp. 1–4 (2011)

  35. Chapman, K.: Multiplexer design techniques for datapath performance with minimized routing resources (2012)

  36. Drimer, S., Gneysu, T., Paar, C.: DSPs, BRAMs, and a pinch of logic: extended recipes for AES on FPGAs. ACM Trans. Reconfig. Technol. Syst. 3(1), 3 (2010)

    Article  Google Scholar 

  37. Sedcole, N.P.: Reconfigurable platform-based design in FPGAs for video image processing. Ph.D. thesis, University of London (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majida Kazmi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazmi, M., Aziz, A. & Akhtar, P. An efficient and compact row buffer architecture on FPGA for real-time neighbourhood image processing. J Real-Time Image Proc 16, 1845–1858 (2019). https://doi.org/10.1007/s11554-017-0690-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-017-0690-7

Keywords

Navigation