Skip to main content
Log in

Parallel real-time virtual dimensionality estimation for hyperspectral images

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

One of the most important tasks in hyperspectral imaging is the estimation of the number of endmembers in a scene, where the endmembers are the most spectrally pure components. The high dimensionality of hyperspectral data makes this calculation computationally expensive. In this paper, we present several new real-time implementations of the well-known Harsanyi–Farrand–Chang method for virtual dimensionality estimation. The proposed solutions exploit multi-core processors and graphic processing units for achieving real-time performance of this algorithm, together with better performance than other works in the literature. Our experimental results are obtained using both synthetic and real images. The obtained processing times show that the proposed implementations outperform other hardware-based solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lillesand, T.M., Kiefer, R.W., Chipman, J.W.: Remote Sensing and Image Interpretation, 5th edn. Wiley, Hoboken (2004)

    Google Scholar 

  2. Keshava, N., Mustard, J.: Spectral unmixing. IEEE Signal Process. Mag. 19(1), 44–57 (2002)

    Article  Google Scholar 

  3. Scharf, L.L.: Statistical Signal Processing, Detection Estimation and Time Series Analysis. Addison-Wesley, Boston (1991). Reading

    MATH  Google Scholar 

  4. Chang, C.-I., Wang, S.: Constrained band selection for hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 44(6), 1575–1585 (2006)

    Article  Google Scholar 

  5. Nascimento, J.M.P., Bioucas-Dias, J.M.: Hyperspectral subspace identification. IEEE Trans. Geosci. Remote Sens. 46(8), 1445–2435 (2008)

    Google Scholar 

  6. Chang, C.-I.: Hyperspectral Imaging: Techniques for Spectral Detection and Classification. Kluwer/Plenum Academic Publishers, New York (2003)

    Book  Google Scholar 

  7. Harsanyi, J.C., Farrand, W., Chang, C.-I.: Detection of subpixel spectral signatures in hyperspectral image sequences, In: Proceedings of the American Society for Photogrammetry and Remote Sensing, pp. 236–247. Reno (1994)

  8. Patel, A., Kosko, B.: Optimal noise benefits in Neyman-pearson signal detection. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3889–3892. Las Vegas (2008)

  9. Lopez, S., Vladimirova, T., Gonzales, C., Resano, J., Mozos, D., Plaza, A.: The promise of reconfigurable computing for hyperspectral imaging onboard systems: a review and trends. Proc. IEEE 101(3), 698–722 (2013)

    Article  Google Scholar 

  10. Torti, E., Acquistapace, M., Danese, G., Leporati, F., Plaza, A.: Real-time identification of hyperspectral subspaces. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 7(6), 2680–2687 (2014)

  11. Plaza, A., Valencia, D., Plaza, J., Chang, C.-I.: Parallel implementation of endmember extraction algorithms for hyperspectral data. IEEE Geosci. Remote Sens. Lett. 3(3), 334–338 (2006)

    Article  Google Scholar 

  12. Barberis, A., Danese, G., Leporati, F., Plaza, A., Torti, E.: Real-time implementation of the vertex component analysis algorithm on GPUs. IEEE Geosci. Remote Sens. Lett. 10(2), 251–255 (2013)

    Article  Google Scholar 

  13. Wu, X., Huang, B., Wang, L., Zhang, J.: GPU-based parallel design of the hyperspectral signal subspace identification by minimum error (HySime). IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 9(9), 4400–4406 (2016)

    Article  Google Scholar 

  14. Torti, E., Danese, G., Leporati, F., Plaza, A.: A hybrid CPU-GPU real-time hyperspectral unmixing chain. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 10(2) 945–951 (2016)

  15. Gonzales, C., Lopez, S., Mozos, D., et al.: A novel FPGA-based architecture for the estimation of the virtual dimensionality in remotely sensed hyperspectral images. J. Real-Time Imag. Proc. 1–12 (2015). doi:10.1007/s11554-014-0482-2

  16. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical recipes in C: the art of scientific computing, 2nd edn. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  17. http://docs.nvidia.com/cuda/cublas/. Last access: Jan 2017

  18. http://www.numpy.org/. Last access: Jan 2017

  19. https://documen.tician.de/pycuda/. Last access: Jan 2017

  20. https://pypi.python.org/pypi/reikna. Last access: Jan 2017

  21. Sanchez, S., Plaza, A.: Fast determination of the number of endmembers for real-time hyperspectral unmixing on GPUs. J. Real-Time Image Process. 9(3), 397–405 (2014)

    Article  Google Scholar 

  22. Sanchez, S., Ramalho, R., Sousa, L., Plaza, A.: Real-time implementation of remotely sensed hyperspectral image unmixing on GPUs. J. Real-Time Image Process. 10(3), 469–483 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank NVIDIA Corporation for the donation of the GPU Tesla K40 used for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuele Torti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torti, E., Fontanella, A. & Plaza, A. Parallel real-time virtual dimensionality estimation for hyperspectral images. J Real-Time Image Proc 14, 753–761 (2018). https://doi.org/10.1007/s11554-017-0703-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-017-0703-6

Keywords

Navigation